
Born’s Rule  

Let us examine Born’s rule in more detail. Consider again Young’s double-slit 

experiment shown in Figure 1.4. In Figure 1.7 two detectors are placed after the slit in 

separate locations. A detector that has detected a photon will be denoted by a white 

detector, otherwise it will be assumed to be in its initial pre-detection state denoted by 

a black detector; in Figure 1.7 both detectors are in the pre-detection state and are 

black.  

Now, suppose a single photon is incident on the double slit. According to 

Schrödinger’s equation, a wave propagates through the slit and impinges on both 

detectors as shown in Figure 1.8. As of yet no detection has been made. At this point 

the wave is physically interacting with both detectors. Let us assume that one of the 

two devices detects the photon, which is denoted by a white detector.  

One might initially expect that the wave is still present—consider for example 

Figure 1.9 (the unitary prediction involves entanglement and is discussed in Chapter 

2). However, this is not the case in the Copenhagen interpretation of Bohr and 

Heisenberg. When a measurement is known to have been made, one invokes the 

measurement postulate due to Born and formalized further by von Neumann. The 

situation is shown in Figure 1.10.  

The unitary Schrödinger wave ceases to exist after the measurement postulate is 

applied and the situation of Figure 1.8 is replaced with Figure 1.10, which happens 

when a measurement occurs in the lower detector. The replacement of Figure 1.8 with 

Figure 1.10 is a discontinuous change and is often referred to as a quantum jump. 

There was good reason historically to consider Figure 1.10 versus Figure 1.8 in order 

to explain measurement. At the time of Schrödinger’s discovery of his equation in 

1926, it had already been known for over twenty years, going back to Einstein’s 

Figure 1.7: Young’s double slit with detectors in their ready 

state as shown in black.  

http://theqmp.com/wp-content/uploads/Ch1/Ch1ParticleProperties_Intro.pdf


discovery, that light exists in quantized energy units called photons. One can see that 

if Figure 1.8 was considered to be correct, it would contradict the existence of such 

indivisible units. The detector would have to be said to have absorbed the energy in 

the photon (by the photoelectric effect proposed by Einstein in 1905), and yet if the 

wave still existed it would seemingly be able to be absorbed by another detector, 

Figure 1.8: Young’s double slit with photon wave 

propagating via Schrödinger's equation and wave function 

impinging on both detectors. 

 

Figure 1.9: Incorrect explanation of Young’s slit with a photon 

detection shown by white detector; wave and detection exist 

simultaneously. 



which would contradict energy conservation.  

So far, we have examined the case of a single detection as illustrated by the lower 

white detector in Figure 1.10. However, it is also possible that the upper detector 

detects the photon as opposed to the lower detector as shown in Figure 1.11. One sees 

that there are three possible outcomes of the experiment; it is possible that no 

detection is made, for which the result would be Figure 1.7, and as well there are two 

possible outcomes when detections occur—those represented by Figure 1.10 and 

Figure 1.10: State evolution under the measurement postulate 

where lower detector shown in white, registers a photon. 

Figure 1.11: Second possible case of detection shown by 

upper white detector. 



Figure 1.11. In 1926, the question became how one mathematically describes the 

physics of the situation.  

In 1926 shortly after learning Schrödinger’s equation, Born proposed the statistical 

nondeterministic interpretation. Born did not ask how Schrödinger’s equation could be 

used to derive the particular wave function that occurs after a collision for individual 

events, but rather only how probable a specific outcome of the collision would be. 

Born considered an electron scattering with an atom. The final electron energy would 

be increased by one quantum at the cost of lowering the energy of the atom. However, 

the direction of the electron after scattering was uncertain in Schrödinger’s description 

and written in terms of a superposition of outcomes of the atomic unperturbed 

eigenstates Ψ𝑚 that are weighted by a function Φm(𝛼, 𝛽, 𝛾) where 𝛼, 𝛽, 𝛾 specifies the 

scattering angles. Born proposed that the probability of any specific outcome would be 

found when considering the scattered wave function of the form ∑ ∫Φm(𝛼, 𝛽, 𝛾)Ψ𝑚 𝑚 . 

The probability of finding the electron scattered with particular angles 𝛼, 𝛽, 𝛾 was 

proposed by Born to be proportional to |Φm(𝛼, 𝛽, 𝛾)|
2.  

In the case of Young’s double-slit, also called an interferometer, one can develop a 

nondeterministic interpretation based on Born’s rule as follows. Let the wave function 

that impinges on the upper detector at 𝑥1 in Figure 1.3 be given as the superposition 

𝜓`𝐿(𝑥1, 𝑡0) + 𝜓`𝑅(𝑥1, 𝑡0) and on the lower detector as 𝜓`𝐿(𝑥2, 𝑡0) + 𝜓`𝑅(𝑥2, 𝑡0). The 

initial situation shown in Figure 1.8 then jumps to either Figure 1.10 or Figure 1.11 

depending on the outcome of the measurement which is determined statistically. The 

Figure 1.12: Statistical bifurcation of Born’s rule. 



resulting probability of Figure 1.10 is given by the square of the wave function at (𝑥2, 

𝑡0), which is |𝜓`𝐿(𝑥2, 𝑡0) + 𝜓`𝑅(𝑥2, 𝑡0)|
2. Similarly, the resulting probability of the 

photon being detected by the upper detector in Figure 1.11 is given by |𝜓`𝐿(𝑥1, 𝑡0) +
 𝜓`𝑅(𝑥1, 𝑡0)|

2. Upon expanding these expressions, the cross-terms produce interference 

between L and R. This bifurcation is shown in Figure 1.12.  

A question that immediately arises is whether this is simply an approximation due 

to the lack of knowledge of the phases of the particles accumulated during the 

collision, or whether the underlying physics is truly nondeterministic. This issue was 

brought up in Born’s original paper [6] and considered by Bohr, Heisenberg, and 

others. Von Neumann in 1927 published a series of papers that attempted to formalize 

the theory. Von Neumann introduced a projection postulate which represented 

measurement by an operator that changes the state when a measurement occurs. The 

projection postulate represents a discontinuous change of the state, depending on the 

result of the measurement. Dirac adopted the projection postulate in his 1930 textbook 

which became the standard presentation of quantum mechanics.  
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