
Heisenberg’s Uncertainty Relationships 

Shortly after Schrödinger proposed his new equation, Heisenberg [7] developed his 

now famous relationships which would be used by Bohr to formulate the famous 

complementarity principle. The Heisenberg uncertainty principles for a quantum wave 

function are given in Equations (1.2): 
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 (1.2)  

As discussed further in Chapter 5, the time-energy uncertainty relation must be 

justified by a different method [8] than the position-momentum uncertainty because 

time does not have a well-defined quantum operator. Bohr also had a concise 

justification of the time-energy uncertainty relation in his Como paper where he first 

introduced complementarity which uses only the classical expressions for the 

resolving power of optical instruments [9, p. 312].  

These uncertainty relationships are largely related to the well-known Fourier 

transform of a function f(t), which we will denote as F(w) where 𝑤 = 2𝜋𝑓. Now one 

Figure 1.13: Functions of time and respective Fourier transforms: (a) 

time localized function f1(t); (b) Fourier transform of f1(t); (c) time 

uncertainty function f2(t); (d) Fourier transform of f2(t). 



can see, from applying Einstein’s result from the photoelectric effect 𝐸 = ℎ𝜈, that w is 

also a measure of the energy of a photon. For example, Figure 1.13(a) shows a highly 

localized time function and Figure 1.13(b) the wide Fourier transform of the function. 

For the case of a more delocalized square-wave time function shown in Figure 1.13(c), 

the Fourier transform in Figure 1.13(d) is significantly more localized in frequency 

when compared to Figure 1.13(b). As one further localizes a function in time, the 

energy becomes less certain. Variables such as time and energy that are related in this 

manner are called conjugate variables and are important for understanding Bohr’s 

complementarity argument. In terms of the issue of measurement, Bohr would argue 

that the interaction with the device necessarily would have an effect on the particle’s 

properties due to the Heisenberg uncertainty principle. Such a change would be in 

principle uncontrollable. One can consider that if a measurement device were to 

interact with a particle in such a manner that the particle’s time when it entered the 

device could be known very precisely, then the particle’s energy would have to have a 

substantial uncertainty. The gray areas shown in Figure 1.14 are valid time-energy 

uncertainty products, while other such products would violate the Heisenberg 

uncertainty principle, particularly where both the time uncertainty and energy 

uncertainty are small.  

This change in uncertainty for Bohr is applicable to the inevitable consequence of 

requiring an interaction between the particle and device in order for the device to 

register a measurable quantity, such as the particle’s time-of-arrival.  

Consider the wave-particle light pulse in its interaction with a measurement device 

that will measure the position of the particle. If the position of the particle is very 

accurately determined, its momentum must be spread or uncertain. Or if the 

Figure 1.14: Energy versus time uncertainties as a consequence of 

Heisenberg’s uncertainty relationships. Valid energy-time uncertainties 

shown in gray. 

 



measurement device is such that the device can ascertain the momentum of the 

particle accurately, then the particle’s position becomes uncertain. Now when the 

momentum becomes certain for a photon, then the position becomes uncertain and a 

plane wave results. One could then ask whether each particle has an in-principle 

unknowable position, but nonetheless does have an absolute position. This is an 

example of Einstein’s objections with quantum mechanics in his debates with Bohr.  
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