Photoelectric Effect

When light shines on a material, it is possible under the right circumstances for
electrons to be freed or ejected from the surface of a material. From Maxwell’s
equations one might expect that higher intensities of light would produce a
proportionally higher ejection rate of electrons from the surface. But experiment
showed this was not to be the case. Philipp Lenard found in an experiment in 1902
that higher intensity light of a particular frequency below a threshold did not lead to
ejection of electrons. Rather, only when the frequency was increased beyond a
threshold did electrons begin to be ejected, a phenomenon called the photoelectric
effect. This was an unexpected experimental finding and was explained by Einstein in
1905.

Einstein explained the photoelectric effect by postulating that there must be
individual discrete light particles or photons. The photons responsible for ionizing an
atom were due to the energy of the individual particles, and not simply the amplitude
of the wave. Einstein’s discovery in which each photon has an energy E = hv revived
the earlier corpuscular or particle theory of light in the context of quantization.

A macroscopic light beam is composed of a large number of individual photons
each of which is a packet of definite energy E = hv. The energy that is required for an
electron to be liberated from an atom depends on the binding energy of the particular
electron and atom. However, for a given atom, such as in a metal, the threshold
required in order to see the photoelectric effect can be measured. Light that impinges
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Figure 1.5: (a) Light source and metal (b) low intensity, no
electrons ejected (c) high intensity, no electrons ejected
(d) high frequency, electrons ejected.



on the photoelectric material with a frequency below this threshold does not lead to
appreciable electron ejection; when the frequency of the light is increased beyond this
threshold one can measure appreciable electron ejection.

The photoelectric effect is an important discovery in quantum mechanics. It shows
that one cannot rely on the wave picture of light alone, but that light possesses an
individual particle aspect. To see why this is, suppose that light was a continuum and
could be represented as a wave, i.e., not composed of individual particles. Then if light
were to interact with matter, it would affect the matter because of its wave-like
disturbance. In Figure 1.5(a), a variable frequency and intensity light source is
considered that impinges on a metal surface. The case where the frequency of the light
source is lower than the binding energy of the electrons in the metal (known as the
Work Function) is considered in Figure 1.5(b). In this case, no electrons are given off.
A given amount of Kinetic energy would be expected to be exchanged in such
interactions depending on the conditions of the experiment. If one assumes that light is
only a single composite wave, then one could expect that by increasing the amplitude
of the light wave, the energy exchanged could also be continuously increased further
and further until an electron is eventually ejected.

Remarkably however (other than from multiple-photon absorption that is non-
linear and typically occurs at a much lower rate), this is not found experimentally
when the intensity of the source is increased, as shown in Figure 1.5(c). Only in the
case where the frequency of the light is increased beyond the binding energy of the
electrons will the process of non-negligible photoionization begin, which is illustrated
in Figure 1.5(d). Once non-negligible photoionization does begin, the rate of
photoionization can be increased by increasing the intensity of the light source.

The explanation that light is solely a wave, does not appear to be adequate to
explain the photoelectric effect. Einstein realized this and proposed that light also has
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Figure 1.6: Consideration of a wave-particle model of light that is
composed of particles that are clustered at the peaks of the wave.



particle properties. One might envision whether or not light could be construed on the
basis of a localized particle model. Consider an alternate explanation such that a light
wave is composed of small indivisible particle packets as shown in Figure 1.6. In this
model, the light particles or individual photons are clustered at the peaks of the wave
in a proportional manner, where the occurrence of a photon is related to the squared
amplitude of the wave. This wave-particle model (WPM) may at first seem reasonable
to explain wave-particle duality.

Assume that each particle packet has an energy E = hv where v is the frequency of
the wave. In terms of explaining the photoelectric effect, the model appears to
correctly predict electron ejection only when the particles have an energy greater than
the threshold of the electron binding energy. Moreover, one can see that if the
particles have energy above the electron binding energy then the rate of electron
ejection should be proportional to the intensity of the light since there will be more
particles, which also agrees with experimental observations. So this model does
appear to be reasonable for explaining the photoelectric effect. However, quantum
particles were later found to have an additional intrinsic fundamental property called
entanglement that contradicts this explanation.

Models of this type in which the wave property of light is supplemented by a
localized singular particle were considered as early as 1909 by Einstein [3, p. 219].
Einstein contemplated the existence of a vector field surrounding the particles that
could extend for large distances. These vector fields from many particles would sum
coherently to create forces on other charged particles.
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