
 

Evolution in the Eigenstate Basis 

An operator is unitary if its Hermitian conjugate 𝑈† (found by taking the transpose 

and complex conjugate 𝑈† ≡ (𝑈∗)𝑇) is equal to its inverse 𝑈† = 𝑈−1, or  

 𝑈†𝑈 = 𝑈𝑈† = 𝐼 (2.6) 

As a consequence, the eigenvalues of 𝑈 have unit norm and take the form 𝜆𝑗 =

exp(𝑖𝜑𝑗). Note that if 𝑈 is unitary, then so is 𝑈†. If 𝑈1 and 𝑈2 are unitaries, then so is 

the product 𝑈 = 𝑈1𝑈2. The invertibility of U implies that information is preserved 

during the evolution. Equation (2.6) implies that the inner product of states is 

preserved under unitary evolution, i.e., if |�́�⟩ = 𝑈|𝜓⟩ and |�́�⟩ = 𝑈|𝜑⟩, then 

⟨�́�|�́�⟩ = ⟨𝜓|𝑈†𝑈|𝜑⟩ = ⟨𝜓|𝜑⟩. In particular, this implies that the net probability of 

finding the particle (denoted by 𝑝(𝑡)) is always preserved for all time under unitary 

evolution.  

 

That is, 

 𝑝(𝑡) = ⟨𝜓(𝑡)|𝜓(𝑡)⟩ = ⟨𝜓(0)|𝑈†𝑈|𝜓(0)⟩ = ⟨𝜓(0)|𝜓(0)⟩ = 𝑝(0).  (2.7) 

Note that Equation (2.1) implies that 𝑈†(𝑡) = 𝑈(−𝑡) so that the unitary operator 

𝑈† simply reverses the time evolution from 𝑈 and thus it is a time-reversible 

transformation. We can also see that Equations (2.1) and (2.2) are equivalent to the 

time-dependent Schrödinger equation since 

𝑖ℏ
𝜕𝑈|𝜓(0)⟩

𝜕𝑡
= 𝐻𝑈|𝜓(0)⟩  

or 

 𝑖ℏ
𝜕|𝜓(𝑡)⟩

𝜕𝑡
= 𝐻|𝜓(𝑡)⟩. (2.8) 

This is the quantum mechanical equation that has long been considered relevant for 

closed or isolated systems. In the Heisenberg representation, the time-dependence is 

unitarily transferred from the wave function |𝜓(𝑡)⟩ to the operators of the problem 

such as G, which obeys 

 𝑑𝐺

𝑑𝑡
= −

𝑖

ℏ
[𝐺, 𝐻]. (2.9) 

In finite dimensions and when the Hamiltonian is time-independent, the time evolution 

unitary operator in Equation (2.1) can be decomposed into a series of simpler pieces 

(this is allowed by the spectral theorem [37, p. 221]) as: 
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 𝑈 = ∑ 𝑒𝑖𝐸𝑘𝑡|𝜙𝑘⟩⟨𝜙𝑘|𝑘    (2.10) 

for any time t. The spectral theorem in infinite dimensions becomes subtler and a 

rigorous operational description can be problematic [37]. This simplification happens 

by using new states called energy eigenstates |𝜙𝑘⟩ of the Hamiltonian which have the 

property 𝐻|𝜙𝑘⟩ = 𝐸𝑘|𝜙𝑘⟩, and the constant 𝐸𝑘 is called the energy eigenvalue. If the 

state of the system is written in this eigenstate basis 

  |𝜓(𝑡)⟩ =∑ 𝑎𝑘(𝑡)|𝜙𝑘⟩
𝑘

 (2.11) 

where ∑ |𝑎𝑘(𝑡)|
2 = 1𝑘 , then from Equations (2.8) and (2.11) we can conclude that (see 

Exercise 2.1 in the book or kindle version of theQMP) 

 

 𝑎𝑘(𝑡) = 𝑎𝑘(0) exp(−𝑖𝐸𝑘𝑡/ℏ).  (2.12) 

The unitary evolution is determined by the total Hamiltonian which may describe 

several subsystems and their mutual interactions. If the subsystems are not interacting, 

then the total unitary operator is simply a product of unitary operators. For example, 

with two non-interacting subsystems A and B, the unitary operator of the total system 

would be a product of local unitary operators, 𝑈𝐴𝐵 =  𝑈𝐴𝑈𝐵. In this case, the 

subsystems evolve independently and it would be possible to average over or trace out 

the degrees of freedom of system B and still have subsystem A described by a unitary 

evolution. However, even in the presence of interactions, there are cases where the 

tracing out of subsystem degrees of freedom can still leave the evolution of the 

remaining subsystems unitary but instead it becomes governed by a different effective 

Hamiltonian instead of the original Hamiltonian in Equation (2.1). For example, this 

can occur when the timescales of different subsystems are quite disparate and the 

technique of adiabatic elimination [38] [39] can be used to eliminate the fast degrees 

of freedom which are adiabatically following the evolution of the slow degrees of 

freedom. This results in an effective Hamiltonian 𝐻𝑒𝑓𝑓 which accurately describes the 

unitary evolution, 𝑈𝑒𝑓𝑓 = exp(−𝑖𝐻𝑒𝑓𝑓t ), of the remaining slow degrees of freedom in 

this adiabatic regime. In other cases, it may be possible to exploit symmetries in the 

Hamiltonian to enable construction of a special unitary transformation �̃� to transform 

the system into an effective Hamiltonian, 𝐻𝑒𝑓𝑓 = �̃� 𝐻�̃�
†. This is yet another role for 

unitary transformations in quantum mechanics and is once again due to the presence 

of symmetries. An example is given in Exercise 2.12 in the book or kindle version of 

theQMP. The quantum evolution for more general cases when there are interactions 

between the subsystems is discussed in a later section. 
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