
 

Subsystem Entropies and the Araki-Lieb Inequality 

The Araki-Lieb Inequality [50] is an important result of quantum correlations. Let the 

composite system of A and B be given by the state 𝜌𝐴𝐵 and the reduced density 

matrices of the two sub-systems A and B be 𝜌𝐴 and 𝜌𝐵. Then the total entropy and 

subsystems entropies are related by 

 

𝑆(𝜌𝐴) + 𝑆(𝜌𝐵) ≥ 𝑆(𝜌𝐴𝐵) ≥ |𝑆(𝜌𝐴) − 𝑆(𝜌𝐵)|. (2.35) 

Note that the entropy of the total system 𝑆(𝜌𝐴𝐵) can be less than that of A and B 

considered separately. In this case, there is more information in the total system due to 

correlations between A and B, which may include the effect of quantum entanglement. 

If 𝜌𝐴𝐵 is a pure state, then 𝑆(𝜌𝐴𝐵) = 0 so that 𝑆(𝜌𝐴) = 𝑆(𝜌𝐵) from the right-hand side 

of Inequality (2.35). For a bipartite pure state, the subsystem entropies are always 

equal no matter how disparate the two physical systems. An example is an atom in an 

electromagnetic field. Remarkably, as long as the combined system is in a pure state, 

the finite degrees of freedom of the atom and the infinite degrees of freedom of the 

field each must have identical entropies. Interactions between subsystems A and B 

result in correlations with an additional measure of information called their mutual 

information 𝐼(𝐴:𝐵) [44], the information about A gained by learning about B or vice-

versa,  

 

 𝐼(𝐴:𝐵) = 𝑆(𝜌𝐴) + 𝑆(𝜌𝐵) − 𝑆(𝜌𝐴𝐵). (2.36) 

In the special case where A and B are independent, the entropies of the subsystems 

simply add, as is also the case for classical systems. 

 

𝑆(𝜌𝐴) + 𝑆(𝜌𝐵) = 𝑆(𝜌𝐴⨂𝜌𝐵). (2.37) 

As an example, consider the two-qubit entangled pure state Equation (2.17) with 

density operator 𝜌𝐴𝐵 = |𝜓𝐴𝐵⟩⟨𝜓𝐴𝐵| and use criterion (E4) to evaluate its entanglement. 

The von Neumann entropy of a pure state is zero so that 𝑆(𝜌𝐴𝐵) = 0. However, the 

entanglement of 𝜌𝐴𝐵 is given by the von Neumann entropy of each of the subsystems 

𝜌𝐴 and 𝜌𝐵. The entropies of these are identical as we know from the Araki-Lieb 

Inequality (2.35), 𝑆(𝜌𝐴) = 𝑆(𝜌𝐵), so we only need to calculate the reduced state for 

one of the subsystems, for example (Exercise 2.7 in the book or kindle version of 

theQMP) 

 

𝜌𝐴 = Tr𝐵(𝜌𝐴𝐵) =
𝐼2
2
. (2.38) 

where 𝐼2 is the 2x2 identity matrix. This indicates that, although the total state 𝜌𝐴𝐵 is 

pure, each of the subsystems is a maximally mixed or chaotic state. The state in 

Equation (2.17) is maximally entangled with 𝐸[𝜌𝐴𝐵] = 𝑆𝐴 = log2. Therefore, it has 

the maximum possible entropy and maximum entanglement. 

http://theqmp.com/wp-content/uploads/Ch2/Ch2MathematicsofQE.pdf#page=1
http://theqmp.com/wp-content/uploads/Ch2/Ch2MathematicsofQE.pdf#page=1
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