
 

Theorems of Wigner and Stone 

Eugene Wigner [12] [45, p. 71] proved that all operations in quantum mechanics 

corresponding to symmetries must be either unitary 𝑈 (e.g., rotations, translations, 

reflections) or anti-unitary 𝑈𝐾 (e.g., time-reversal), where 𝐾 denotes complex 

conjugation and that these preserve probabilities. Therefore, the new states after a 

symmetry operation will obey the same laws of nature as the original states. The 

symmetry of time-translation corresponds to unitary time-evolution. Wigner’s 

Theorem allows us to speak as if the pure states |𝜓⟩ of quantum mechanics live in 

Hilbert space. Technically, it is the entire set {𝑒𝑖𝛼|𝜓⟩} (called a ray) for all real phases 

 that describes one physical state since the phases do not affect probabilities or 

expectation values. However, Wigner’s result means that all mappings between rays 

that preserve probabilities can be accomplished by either unitary or anti-unitary 

mappings between vectors in Hilbert space. That most of the physically significant 

transformations in quantum mechanics are unitary is due to Wigner’s theorem. 

A particular system and its interactions will determine the specific form for 𝑈. This 

can often be facilitated by Stone’s Theorem [11] [37, p. 264] which implies that for 

every (strongly continuous) unitary operator 𝑈, there is a Hermitian operator 𝐻 (so 

that 𝐻 = 𝐻†), called the Hamiltonian, such that 

 
𝑈(𝑡) = exp(−𝑖𝐻𝑡/ℏ). (2.22) 

The Hamiltonian represents the energies of the system and its interactions and the 

unitary evolution is determined by these energies. This implements the time-

translation invariance symmetry of Wigner’s theorem—the laws of nature do not 

depend on how our clocks are set. Operating with the unitary operator of Equation 

(2.22) simply shifts the time (Exercise 2.1) 

 𝑈(𝜏)|𝜓(𝑡)⟩ = |𝜓(𝑡 + 𝜏)⟩. (2.23) 

The time translation symmetry corresponds to conservation of energy, since 

𝑈𝐻𝑈† = 𝐻. Similarly, if the laws of nature are independent of a shift in spatial 

translation (i.e. where we mark the origin of our coordinate system), there must exist 

an equivalent unitary operation. This corresponds to conservation of linear 

momentum, with the spatial translation unitary operator given by 

 
𝑈𝑃(�̅�) = exp(−𝑖�̅� ∙ �̅�), (2.24) 

and which shifts the spatial location according to (Exercise 2.1): 

 
𝑈𝑃(�̅�)|𝜓(�̅�, 𝑡)⟩ = |𝜓(�̅� + �̅�, 𝑡)⟩. (2.25) 

For each symmetry, there is a unitary operator to generate the corresponding 

transformation in terms of the complementary canonical coordinate [45, p. 69]. 

Symmetries can be continuous (rotations, translations) or discrete (time reversal, 

space-inversion or parity). The unitary operators for continuous symmetries differ 



 

infinitesimally from the identity by a Hermitian operator 𝐺 called the generator of the 

corresponding symmetry 

 

𝑈 = 𝐼 − 𝑖
𝜀

ℏ
𝐺 + 𝑂(𝜀2). (2.26) 

If the symmetry is conserved by the time evolution so that 𝑈𝐻𝑈† = 𝐻, then we can 

conclude from Equation (2.26) that: 

 
[𝐺, 𝐻] = 0 (2.27) 

where the commutator is given by [𝐺, 𝐻] ≡ 𝐺𝐻 − 𝐻𝐺. Therefore, conservation laws 

can be related to commutation relations of the Hamiltonian (Exercise 2.5). 

In the Heisenberg representation, the time-dependence is unitarily transferred from 

the Schrödinger representation wave function |𝜓(𝑡)⟩ to the operators of the problem 

such as G, which obeys 

 
𝑑𝐺

𝑑𝑡
= −

𝑖

ℏ
[𝐺, 𝐻]. (2.28) 

If G is a constant of the motion, then we can conclude from Equations (2.27) and 

(2.28) that 𝑑𝐺/𝑑𝑡 = 0. For example, if H is invariant under spatial translation, then 

[𝑃, 𝐻] = 0 and, therefore, the momentum 𝑃 is a constant of the motion, 𝑑𝑃/𝑑𝑡 = 0. 
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