
 

Bell’s Inequality 

The theory of entanglement is paramount in the development and understanding of the 

measurement problem. As will be further discussed in Chapter 4, the problem of the 

unitary prediction of entanglement versus the expectation that such entanglement is 

not present in local classical physics, was understood by Einstein rather earlier on 

historically than is generally realized. With the discovery by Bell [81] in 1964 of 

inequalities that are satisfied by any local hidden variable model and yet violated by 

quantum mechanical predictions, the issues of entanglement and nonlocality became 

clear. Experiments beginning in 1972 and refined over subsequent years by Clauser et 

al. [82], Aspect et al. [83], Ou et al. [84], and Shih et al. [85] ultimately led to the 

larger physics community’s acceptance of entanglement and later, with proposed 

applications and theory of entanglement, to the emergence of the field of Quantum 

Information. The remaining loopholes that have remained regarding nonlocality due to 

detector inefficiency, etc., have recently been essentially closed [86] [87].  

One might have expected then, with entanglement being understood and accepted 

by many, that the Quantum Measurement Problem, which deals with the dichotomy 

between entanglement and separable systems would be clearly understood and 

appreciated by most. This is not the case—the great majority of experiments (there are 

exceptions but often these systems violate the continuous Gaussian bound rather than 

Bell’s inequality) in quantum information deal with the dichotomy between the 

entanglement of very few particles versus separable systems. On the other hand, the 

measurement problem requires one to confront the issue of the entanglement of 

detectors which are often considered to be macroscopic bodies.  

The two particles that are emitted impinge on (separate) beam splitters. In the case 

when the source emits photons that are entangled in polarization, the beam splitter is 

assumed to be a polarizing beam splitter. After the polarizing beam splitter there are 

two detectors A and B corresponding to the two possible non-reflected and reflected 

outputs of the polarizing beam splitter. If the photon emitted toward Detector A is 

detected in the reflected path, A is assigned the value -1, otherwise A=1. Similarly, if 

the photon emitted toward Detector B is detected in the reflected path, B is assigned 

the value -1, otherwise B=1.  

Each polarizing beam splitter can be set at an arbitrary angle 𝜃 that would allow an 

input horizontal polarization state |1𝐻⟩ to always pass through un-reflected when 𝜃 =
0 but has an increasing probability of being reflected as 𝜃 is increased until an 

incoming |1𝐻⟩ is completely reflected when 𝜃 = 90°.  
Over multiple trials of the experiment, the statistic �̂� is defined as the average of 

the product of the outcomes of A and B and is a measure of the statistical correlation 

between random variables A and B. For a given set of beam splitter parameters 𝜃𝐴, 𝜃𝐵 

the correlation computed is denoted �̂�(𝜃𝐴, 𝜃𝐵). 
When the Source S emits particles, one can consider the possibility of a hidden 

variable parameter defined by 𝜆 ∈ ℝ where ℝ denotes the real numbers such that the 

detection result at A is a function of only 𝜆 and 𝜃𝐴 while the detection result at B is a 

function of only 𝜆 and 𝜃𝐵. In this case note that 𝐴(𝜆, 𝜃𝐴) cannot be a function of the 



 

parameter setting 𝜃𝐵. Such a model is defined to be a local hidden variable (LHV) 

model. The Clauser-Horne-Shimony-Holt (CHSH) inequality [88] is a more widely 

used extension of Bell’s original inequality [81] that is easier to test experimentally. 

The CHSH inequality consists of computing the sample �̂�(𝜃𝐴, 𝜃𝐵) for four sets of 

experimental configurations with parameters {(𝜃𝐴, 𝜃𝐵), (�́�𝐴, 𝜃𝐵), (𝜃𝐴, �́�𝐵), (�́�𝐴, �́�𝐵)}.  

For each experimental configuration, one computes �̂� over the series of 

experimental trials. As shown in [88], the CHSH inequality provides that any LHV 

model will satisfy 

 𝑆 =  |�̂�(𝜃𝐴, 𝜃𝐵) + �̂�(𝜃�́�, 𝜃𝐵) + �̂�(𝜃𝐴, 𝜃�́�) − �̂�(𝜃�́�, 𝜃�́�)| ≤ 2.  (3.2) 

This inequality is also satisfied by every separable quantum state. However, it may be 

violated by any pure entangled quantum state up to a maximum possible violation 

given by 𝑆 = 2√2, known as the Cirel’son bound [89]. Violation of the local CHSH 

inequality is a sufficient condition for detection of entanglement between the two 

parties, regardless of the system and details of implementation. For every pure 

entangled state, a set of local measurements can be found so that the resulting 

correlations will violate the CHSH inequality [90] [91]. For mixed states, the relation 

between entanglement and nonlocality is subtler since any associated nonlocality 

sometimes cannot be revealed using only direct measurements [92]. 

As an example of a violation of the CHSH inequality at the Cirel’son bound, 

consider the maximally entangled input state (|1𝐻⟩ 𝐴|1𝐻⟩ 𝐵 + |1𝑉⟩ 𝐴|1𝑉⟩ 𝐵)/√2. The 

quantum mechanical prediction can be shown to be given by 𝐶(𝜃𝐴, 𝜃𝐵) =

cos(2(𝜃𝐴 − 𝜃𝐵)) where we define 𝐶(𝜃𝐴 , 𝜃𝐵) ≡ 𝐸(�̂�(𝜃𝐴 , 𝜃𝐵)) and denote the expected value 

of a random variable 𝑥 by 𝐸(𝑥). Then this maximally entangled input state and the 

particular measurement settings separated by successive 22.5-degree angles given by 

 {(0°, 22.5°), (0°, 67.5°), (45°, 22.5°), (45°, 67.5°)}  (3.3) 

produce a correlation at Cirel’son’s bound 𝑆 = 2√2 ≈ 2.8284, which significantly 

violates Equation (3.2). There have now been numerous experimental confirmations of 

violations of Bell’s inequality, closing existing “loopholes” provided by additional 

assumptions that previous experimenters were forced to make due to technological 

constraints (such as low detection efficiency for which hidden variable models still 

exist, even though the correlation S exceeds Bell’s inequality) [93] [86] [94]. The 

Figure 3.3 Experimental configuration for testing Bell’s Inequality. 



 

preponderance of evidence indicates that Nature is non-local and consistent with 

quantum mechanics. 

Separable quantum states are restricted by the CHSH bound 𝑆sep ≤ 2 consistent 

with LHV models while entangled quantum states can achieve the larger Cirel’son 

bound 𝑆ent ≤ 2√2. In order to achieve the maximal violation for entangled quantum 

states, both pairs of local observables must be chosen to be anti-commuting [91]. 

Remarkably, the case of anti-commuting observables also affects the case of separable 

quantum states, resulting in a strengthened CHSH bound of 𝑆sep ≤ √2, considerably 

smaller than the CHSH bound of 𝑆sep ≤ 2 [95] [96]. As will be seen in this chapter, the 

bound of √2 can be achieved by pure product states for which there is no quantum 

entanglement. The dichotomy between unitary and non-unitary processes can be 

quantified in terms of the contrast between the corresponding limits of 𝑆product = √2 

and 𝑆entangled = 2√2 in Bell measurements. 
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