
 

Extension to Mixed States 

In the prior development, it was assumed that the initial ready state of Device i is the 

pure state |𝜓𝑟
0⟩𝑖, i=1,2, |𝜓𝑟

0⟩𝑖 ∈ ℋ𝑖  , i=1,2, 𝒟(ℋ𝑖) = 𝑁. The joint state of Device 1 and 2 

was assumed to be a tensor product state given by |𝜓𝑟
0⟩1⊗ |𝜓𝑟

0⟩2. The UMDT 

procedure developed previously is herein extended to the case of mixed states.  

The initial ready state of Device i will be assumed to be described by the density 

matrix 𝜌𝑟,𝑖
0 , 𝒟(ℋ𝑖) = 𝑁. Given a Hilbert space ℋ, a density matrix 𝜌 sometimes 

referred to as a density operator 𝜌: ℋ → ℋ, is a bounded positive semi-definite 

Hermitian unity trace operator. The set of density matrices, denoted 𝔐(ℋ), is a 

convex set with extremal elements that are pure states.  

A Hermitian positive semi-definite matrix 𝜌𝑟,𝑖
0  𝜖 𝔐(ℋ) can be written as  

 

𝜌𝑟,𝑖
0 =∑𝜆𝑗

𝑖|𝜓𝑟,𝑗
0 ⟩𝑖 𝑖⟨

𝑅𝑖

𝑗=1

𝜓𝑟,𝑗
0 | 

 

where |𝜓𝑟,𝑗
0 ⟩𝑖 ∈ ℋ𝑖 ,i=1,2 are any set of orthogonal eigenstates of the density matrix 

with respective eigenstates 𝜆𝑗
𝑖 ≥ 0. The rank 𝑅𝑖 of the density matrix denoted 

ℛ(𝜌𝑟,𝑖
0 ) is equal to unity in the case that the state is pure and is strictly greater than 1 

in the case that the matrix is mixed.  

The initial photon state after the PBS will be assumed as before to be a pure state 

given as  

 

|𝜓photon,PBS⟩  = √𝑎|1𝑉⟩𝐵⊗ |0⟩𝐶 + √1 − 𝑎|0⟩𝐵⊗ |1𝐻⟩𝐶, 

 

where 𝑎 ∈ ℂ, |𝑎| ≤ 1 is the degree of superposition. The density operator of the 

photon initial state is represented as 

 

𝜌photon,PBS = |𝜓photon,PBS⟩ ⟨𝜓photon,PBS|. 

 

The initial state of the Ancilla, Photon, Device 1, and Device 2 can be written given as 

 

�̃�init = 𝜌𝐴1,𝐴2
0 ⊗𝜌photon,PBS⊗𝜌𝑟,1

0 ⊗𝜌𝑟,2
0 . (3.29) 

where 𝜌𝐴1,𝐴2
0 = 𝜌𝐴1

0 ⨂𝜌𝐴2
0  is the initial joint density matrix of Ancilla 1 and 2. This can 

be re-written in a manner similar to the case of pure states whereby Ancilla 1 and the 

B photon modes are adjacent to Device 1 while Ancilla 2 and C photon modes have 

been inserted adjacent to Device 2, which will be denoted by 𝜌init. As in the case of 

the pure state treatment, the composite system of the joint state of the photon in the B 

port and Device 1 will be referred to as System 1′ while System 2′ denotes the joint 

state of the photon in the C port and Device 2. Let 𝑈sw
(1)

 denote the unitary operator 

that swaps Mode C with Device 1 so that System 1′ and 2′ are adjacent and denote 



 

𝑈sw
(2)

 the unitary operator that changes the position of Ancilla 2 so that it is inserted 

between System 1′ and 2′. In this case, 

 

𝜌𝑖𝑛𝑖𝑡 = 𝑈sw
(3)
�̃�init𝑈sw

(3)
′ 

 

where 𝑈sw
(3)

=𝑈sw
(2)
𝑈sw
(1)

. Consider the unitary evolution of the initial state of Equation 

(3.29) followed by the Step 1 unitary evolution to be specified via the matrices X and 

Y, which is then followed by the Step 2 Bell experiment which consists of measuring a 

set of observables. The expected value one of any of the observables 𝒪 is given by, 

 

ℰ(𝜌init, 𝒪) = Tr(𝒪𝑈𝑐(𝜌𝐴1,𝐴2
(0)

⊗𝜌photon,PBS⊗∑𝜆𝑗
𝑖|𝜓𝑟,𝑗

0 ⟩1 1⟨

𝑅1

𝑗=1

𝜓𝑟,𝑗
0 | ⊗ 𝜌𝑟,2

0 )𝑈𝑐′) 

 

where 𝑈𝑐 ≡ (𝑋⨂𝑌)𝑈sw
(3)
. Denoting the initial density matrix 

 

𝜌init(𝑗) ≡ 𝜌photon,PBS⊗ |𝜓𝑟,𝑗
0 ⟩1 1⟨𝜓𝑟,𝑗

0 | ⊗ 𝜌𝑟,2
0 , 

 

it is found by completing Exercises 3.4-3.6 (in the book or kindle version of theQMP) 

that ℰ(𝜌init,𝒪) is completely characterized by ℰ(𝜌init(𝑗), 𝒪), ∀ j. 

As we already have developed a methodology of specifying 𝑇1 when both Device 1 

and 2 are each pure states, let us for now hold 𝑗 constant and assume that Device 1 is 

initialized to |𝜓𝑟,𝑗
0 ⟩1 1⟨𝜓𝑟,𝑗

0 | and Device 2 initialized to a pure state. Consider then the 

following extension to the methodology of specifying 𝑇1 for mixed states, for which 

after Step 1, ℰ(𝜌init(𝑗), 𝒪) has transferred the entanglement that existed between 

System 1′ and System 2′ to entanglement of the two qubits. The theory will be 

completed if a linear operator 𝑇1⊗𝑇2 can be specified that achieves the desired 

entanglement transfer between System 1′ and System 2′ into entanglement of the two 

ancilla, for all of Device 1’s eigenstates |𝜓𝑟,𝑗
0 ⟩1. With this goal in mind, define 

 
|𝑒1,𝑗,
0 ⟩1′ = |1𝑉⟩𝐵⊗ |𝜓𝑟,𝑗

0 ⟩1 

|𝑒2,𝑗
0 ⟩1′ = |0⟩𝐵⊗ |𝜓𝑟,𝑗

0 ⟩1 

 

and |𝑒𝑖,𝑗
1 ⟩1′ = 𝑊|𝑒𝑖,𝑗

0 ⟩1′ , 𝑖 = 1,2 as the unitarily evolved states after interaction of 

Photon B mode with Device 1. The solution for 𝑇1 when Device 1 is initially in a pure 

state has previously been found and can be written (with a slight change to the 

notation) 

 

𝑇1,𝑗 ≡ (|1⟩𝐴1⊗ |𝑒1,𝑗
1 ⟩1′)(⟨0|𝐴1⊗ 1′ ⟨𝑒1,𝑗

1 |) + (|0⟩𝐴1⊗ |𝑒1,𝑗
1 ⟩1′)(⟨0|𝐴1⊗ 1′ ⟨𝑒2,𝑗

1 |). 

 

A linear map is needed that maps |0⟩𝐴1⊗ |𝑒1,𝑗
1 ⟩1′  to |1⟩𝐴1⊗ |𝑒1,𝑗

1 ⟩1′  and |0⟩𝐴1⊗ 

|𝑒2,𝑗
1 ⟩1′ to |0⟩𝐴1⊗ |𝑒1,𝑗

1 ⟩1′. Hence the mapping for the case of pure states must be 



 

extended to hold not only for any single j, but for all j. Consider the ansatz that the 

form of 𝑇1 is the sum of these 𝑇1,𝑗, i.e., 

 

 
𝑇1 =∑𝑇1,𝑗 .

𝑅

𝑗=1

 (3.30) 

Note that 𝑇1 is a linear operator because the sum of linear operators is itself a 
linear operator. Given a similar construction for 𝑇2, 𝑇1⊗𝑇2 achieves the desired 

transfer from the entanglement between System 1′ and System 2′ to entanglement 

between the two Ancilla, see Exercise 3.8-3.9 in the book or kindle version of 

theQMP. Furthermore, 𝑇1 and 𝑇2 can be extended to unitary mappings 𝑋 and 𝑌, see 

Exercises 3.10-3.12 in the book or kindle version of theQMP. 

So far, a procedure has been developed to handle any initial state that is of the 

form whereby one of the two Devices is initialized to a mixed state while the other 

device is initialized to a pure state. To complete the argument, the latter result is 

extended in which Device 1 and Device 2 can both be initialized to arbitrary mixed 

states, see Exercise 3.13 in the book or kindle version of theQMP. Hence, we have 

specified a UMDT for arbitrary initial device states. 
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