Extension to Mixed States

In the prior development, it was assumed that the initial ready state of Device i is the pure state $\left|\psi_{r}^{0}\right\rangle_{i}, i=1,2,\left|\psi_{r}^{0}\right\rangle_{i} \in \mathcal{H}_{i}, i=1,2, \mathcal{D}\left(\mathcal{H}_{i}\right)=N$. The joint state of Device 1 and 2 was assumed to be a tensor product state given by $\left|\psi_{r}^{0}\right\rangle_{1} \otimes\left|\psi_{r}^{0}\right\rangle_{2}$. The UMDT procedure developed previously is herein extended to the case of mixed states.

The initial ready state of Device i will be assumed to be described by the density matrix $\rho_{r, i}^{0}, \mathcal{D}\left(\mathcal{H}_{i}\right)=N$. Given a Hilbert space \mathcal{H}, a density matrix ρ sometimes referred to as a density operator $\rho: \mathcal{H} \rightarrow \mathcal{H}$, is a bounded positive semi-definite Hermitian unity trace operator. The set of density matrices, denoted $\mathfrak{M}(\mathcal{H})$, is a convex set with extremal elements that are pure states.

A Hermitian positive semi-definite matrix $\rho_{r, i}^{0} \in \mathfrak{M}(\mathcal{H})$ can be written as

$$
\rho_{r, i}^{0}=\sum_{j=1}^{R_{i}} \lambda_{j}^{i}\left|\psi_{r, j}^{0}\right\rangle_{i}\left\langle\left\langle\psi_{r, j}^{0}\right|\right.
$$

where $\left|\psi_{r, j}^{0}\right\rangle_{i} \in \mathcal{H}_{i}, i=1,2$ are any set of orthogonal eigenstates of the density matrix with respective eigenstates $\lambda_{j}^{i} \geq 0$. The rank R_{i} of the density matrix denoted $\mathcal{R}\left(\rho_{r, i}^{0}\right)$ is equal to unity in the case that the state is pure and is strictly greater than 1 in the case that the matrix is mixed.

The initial photon state after the PBS will be assumed as before to be a pure state given as

$$
\left|\psi_{\mathrm{photon}, \mathrm{PBS}}\right\rangle=\sqrt{a}\left|1_{V}\right\rangle_{B} \otimes|0\rangle_{C}+\sqrt{1-a}|0\rangle_{B} \otimes\left|1_{H}\right\rangle_{C},
$$

where $a \in \mathbb{C},|a| \leq 1$ is the degree of superposition. The density operator of the photon initial state is represented as

$$
\rho_{\text {photon }, \mathrm{PBS}}=\left|\psi_{\text {photon }, \mathrm{PBS}}\right\rangle\left\langle\psi_{\text {photon }, \mathrm{PBS}}\right| .
$$

The initial state of the Ancilla, Photon, Device 1, and Device 2 can be written given as

$$
\begin{equation*}
\tilde{\rho}_{\text {init }}=\rho_{A_{1}, A_{2}}^{0} \otimes \rho_{\text {photon, PBS }} \otimes \rho_{r, 1}^{0} \otimes \rho_{r, 2}^{0} . \tag{3.29}
\end{equation*}
$$

where $\rho_{A_{1}, A_{2}}^{0}=\rho_{A 1}^{0} \otimes \rho_{A 2}^{0}$ is the initial joint density matrix of Ancilla 1 and 2. This can be re-written in a manner similar to the case of pure states whereby Ancilla 1 and the B photon modes are adjacent to Device 1 while Ancilla 2 and C photon modes have been inserted adjacent to Device 2, which will be denoted by $\rho_{\text {init }}$. As in the case of the pure state treatment, the composite system of the joint state of the photon in the B port and Device 1 will be referred to as System 1' while System 2' denotes the joint state of the photon in the C port and Device 2 . Let $U_{\mathrm{sw}}^{(1)}$ denote the unitary operator that swaps Mode C with Device 1 so that System 1' and 2' are adjacent and denote
$U_{\mathrm{sw}}^{(2)}$ the unitary operator that changes the position of Ancilla 2 so that it is inserted between System 1' and 2^{\prime}. In this case,

$$
\rho_{\text {init }}=U_{\mathrm{sw}}^{(3)} \tilde{\rho}_{\mathrm{init}} U_{\mathrm{sw}}^{(3)},
$$

where $U_{\mathrm{sw}}^{(3)}=U_{\mathrm{sw}}^{(2)} U_{\mathrm{sw}}^{(1)}$. Consider the unitary evolution of the initial state of Equation (3.29) followed by the Step 1 unitary evolution to be specified via the matrices X and Y, which is then followed by the Step 2 Bell experiment which consists of measuring a set of observables. The expected value one of any of the observables \mathcal{O} is given by,

$$
\mathcal{E}\left(\rho_{\text {init }}, \mathcal{O}\right)=\operatorname{Tr}\left(\mathcal{O} U_{c}\left(\rho_{A_{1}, A_{2}}^{(0)} \otimes \rho_{\text {photon,PBS }} \otimes \sum_{j=1}^{R_{1}} \lambda_{j}^{i}\left|\psi_{r, j}^{0}\right\rangle_{11}\left\langle\psi_{r, j}^{0}\right| \otimes \rho_{r, 2}^{0}\right) U_{c}{ }^{\prime}\right)
$$

where $U_{c} \equiv(X \otimes Y) U_{\mathrm{sw}}^{(3)}$. Denoting the initial density matrix

$$
\rho_{\text {init }}(j) \equiv \rho_{\text {photon,PBS }} \otimes\left|\psi_{r, j}^{0}\right\rangle_{11}\left\langle\psi_{r, j}^{0}\right| \otimes \rho_{r, 2}^{0}
$$

it is found by completing Exercises 3.4-3.6 (in the book or kindle version of theQMP) that $\mathcal{E}\left(\rho_{\text {init }} \mathcal{O}\right)$ is completely characterized by $\mathcal{E}\left(\rho_{\text {init }}(j), \mathcal{O}\right), \forall \mathrm{j}$.

As we already have developed a methodology of specifying T_{1} when both Device 1 and 2 are each pure states, let us for now hold j constant and assume that Device 1 is initialized to $\left|\psi_{r, j}^{0}\right\rangle_{1}\left\langle\psi_{r, j}^{0}\right|$ and Device 2 initialized to a pure state. Consider then the following extension to the methodology of specifying T_{1} for mixed states, for which after Step $1, \mathcal{E}\left(\rho_{\text {init }}(j), \mathcal{O}\right)$ has transferred the entanglement that existed between System 1' and System 2' to entanglement of the two qubits. The theory will be completed if a linear operator $T_{1} \otimes T_{2}$ can be specified that achieves the desired entanglement transfer between System 1' and System 2' into entanglement of the two ancilla, for all of Device 1's eigenstates $\left|\psi_{r, j}^{0}\right\rangle_{1}$. With this goal in mind, define

$$
\begin{aligned}
& \left|e_{1, j}^{0}\right\rangle_{1^{\prime}}=\left|1_{V}\right\rangle_{B} \otimes\left|\psi_{r, j}^{0}\right\rangle_{1} \\
& \left|e_{2, j}^{0}\right\rangle_{1^{\prime}}=|0\rangle_{B} \otimes\left|\psi_{r, j}^{0}\right\rangle_{1}
\end{aligned}
$$

and $\left|e_{i, j}^{1}\right\rangle_{1^{\prime}}=W\left|e_{i, j}^{0}\right\rangle_{1^{\prime}}, i=1,2$ as the unitarily evolved states after interaction of Photon B mode with Device 1 . The solution for T_{1} when Device 1 is initially in a pure state has previously been found and can be written (with a slight change to the notation)

$$
T_{1, j} \equiv\left(|1\rangle_{A_{1}} \otimes\left|e_{1, j}^{1}\right\rangle_{1^{\prime}}\right)\left(\left\langle\left. 0\right|_{A_{1}} \otimes_{1^{\prime}}\left\langle e_{1, j}^{1}\right|\right)+\left(|0\rangle_{A_{1}} \otimes\left|e_{1, j}^{1}\right\rangle_{1^{\prime}}\right)\left(\left\langle\left. 0\right|_{A_{1}} \otimes_{1^{\prime}}\left\langle e_{2, j}^{1}\right|\right) .\right.\right.
$$

A linear map is needed that maps $|0\rangle_{A_{1}} \otimes\left|e_{1, j}^{1}\right\rangle_{1^{\prime}}$ to $|1\rangle_{A_{1}} \otimes\left|e_{1, j}^{1}\right\rangle_{1^{\prime}}$ and $|0\rangle_{A_{1}} \otimes$ $\left|e_{2, j}^{1}\right\rangle_{1^{\prime}}$ to $|0\rangle_{A_{1}} \otimes\left|e_{1, j}^{1}\right\rangle_{1^{\prime}}$. Hence the mapping for the case of pure states must be
extended to hold not only for any single j, but for all j. Consider the ansatz that the form of T_{1} is the sum of these $T_{1, j}$, i.e.,

$$
\begin{equation*}
T_{1}=\sum_{j=1}^{R} T_{1, j} \tag{3.30}
\end{equation*}
$$

Note that T_{1} is a linear operator because the sum of linear operators is itself a linear operator. Given a similar construction for $T_{2}, T_{1} \otimes T_{2}$ achieves the desired transfer from the entanglement between System 1' and System 2' to entanglement between the two Ancilla, see Exercise 3.8-3.9 in the book or kindle version of theQMP. Furthermore, T_{1} and T_{2} can be extended to unitary mappings X and Y, see Exercises 3.10-3.12 in the book or kindle version of theQMP.

So far, a procedure has been developed to handle any initial state that is of the form whereby one of the two Devices is initialized to a mixed state while the other device is initialized to a pure state. To complete the argument, the latter result is extended in which Device 1 and Device 2 can both be initialized to arbitrary mixed states, see Exercise 3.13 in the book or kindle version of theQMP. Hence, we have specified a UMDT for arbitrary initial device states.

