
 

Geometry of the Measurement Problem  

Note that state evolution via Schrödinger’s equation is a requirement in 𝐻1 in both 

Tests 3.1 and 3.2. In this respect, first we will examine what occurs during 

Schrödinger unitary evolution in the interaction of the photon with the particles 

composing the devices, and later what occurs when a measurement has occurred. 

Consider an initial photon state in Figure 3.4 that is input into the polarizing beam 

splitter given by  

 

√𝑎|1𝑉⟩𝐴 + √1 − 𝑎|1𝐻⟩𝐴, 

 

where 𝑎 ∈ ℂ, |𝑎| ≤ 1. This leads to the initial photon state after the polarizing beam 

splitter (PBS) 

 

 |𝜓photon,PBS⟩  = √𝑎|1𝑉⟩𝐵⊗ |0⟩𝐶 + √1 − 𝑎|0⟩𝐵⊗ |1𝐻⟩𝐶 (3.4) 

Note that a valid set of Schmidt vectors of the initial photon set can be directly 

determined via |𝑒1⟩1 = |1𝑉⟩𝐶 , |𝑒2⟩1 = |0𝐻⟩𝐵, |𝑓1⟩2=|0𝐻⟩𝐶, |𝑓2⟩2=|1𝑉⟩𝐶. As all of these 

vectors are elements of Hilbert space ℋphoton, with dimension 𝒟(ℋphoton) = 2, the 

geometry of this photon state is such that the vectors lie in within a natural basis of 

Euclidean space as seen in Figure 3.9.  

Combining this with the initial state of the two devices and the two ancilla qubits 

in Figure 3.4 gives an initial state that will be found to be conveniently ordered as 

 

 |𝜓init⟩  = √𝑎|0⟩𝐴1⊗ |1𝑉⟩𝐵⊗ |𝜓𝑟
0⟩1⊗ |0⟩𝐴2⊗ |0𝐻⟩𝐶⊗ |𝜓𝑟

0⟩2

+ (1 − √𝑎)|0⟩𝐴1⊗ |0𝐻⟩𝐵⊗ |𝜓𝑟
0⟩1⊗ |0⟩𝐴2⊗ |1𝐻⟩𝐶

⊗ |𝜓𝑟
0⟩2) 

(3.5) 

where |𝜓𝑟
0⟩𝑖 ∈ ℋ𝑖  , i=1,2, 𝒟(ℋ𝑖) = 𝑁, |0⟩𝐴1 ∈ ℋ𝐴1, |0⟩𝐴2 ∈ ℋ𝐴2, 𝒟(ℋ𝐴1) = 𝒟(ℋ𝐴2) = 2.  

Figure 3.9: Geometry of entangled initial photon. 
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We have included in |𝜓𝑖𝑛𝑖𝑡⟩ the state space of the two ancilla qubits that are 

depicted in Figure 3.4. Ancilla 1 and the B photon modes have been inserted adjacent 

to Device 1, while Ancilla 2 and the C photon modes have been inserted adjacent to 

Device 2. The composite system composed of the state of the photon in the B port and 

Device 1 will be referred to as System 1′. System 2′ denotes the state of the photon in 

the C port and Device 2. The ancillae are assumed initially uncoupled with Systems 1′ 
and 2′ and remain in the same state during the Schrödinger unitary evolution whereby 

the photon interacts with the two devices. For notational simplicity, these constant 

states of the ancillae will not be written but are assumed present, and will be inserted 

later when the ancillae are directly utilized, resulting in 

 

 |𝜓init⟩  = √𝑎|𝑒1
0⟩1′⊗ |𝑓1

0⟩2′ + √1 − 𝑎|𝑒2
0⟩1′⊗ |𝑓2

0⟩2′ (3.6) 

where 

 

|𝑒1
0⟩1′ = |1𝑉⟩𝐵⊗ |𝜓𝑟

0⟩1 

|𝑒2
0⟩1′ = |0⟩𝐵⊗ |𝜓𝑟

0⟩1 

|𝑓1
0⟩2′ = |0⟩𝐶⊗ |𝜓𝑟

0⟩2 

|𝑓2
0⟩2′ = |1𝐻⟩𝐶⊗ |𝜓𝑟

0⟩2. 

 

The Hamiltonian is assumed to lack interaction terms between Device 1 and 2, 

likewise there are no photon interaction terms between Arm B and Arm C in Figure 

3.4 locally at Device 1 and 2 respectively. It is assumed under Hypothesis 𝐻0 of 

Hypothesis Test 3.1 that the state evolution follows Schrödinger’s equation. Due to 

the lack of interaction between Systems 1′ and 2′, the Hamiltonian consists of 

interaction terms only between the individual particles composing a device (which is 

assumed to include all time-like particles within a local environment) and between the 

individual devices and the respective local arms of the photon. The Schrödinger 

evolution in Step 1, therefore, takes the form of a tensor product operating on Systems 

1′ and 2′ with W and V Schrödinger unitary. Hence  

 

 𝑈 = 𝑒−𝑖𝐻𝑡 = (𝐼 ⊗𝑊)⊗ (𝐼 ⊗ 𝑉) (3.7) 

and |𝜓𝑓𝑖𝑛⟩  = (𝐼 ⊗𝑊)⊗ (𝐼 ⊗ 𝑉) |𝜓𝑖𝑛𝑖𝑡⟩. The ancillae are multiplied by the identity 

operator and are unaffected by 𝑈. Substituting Equation (3.6), the initial state under  

Schrödinger unitary evolution evolves to 

 

|𝜓fin,1⟩  = √𝑎𝑊|𝑒1
0⟩1′⊗𝑉|𝑓1

0⟩2′ + √1 − 𝑎𝑊|𝑒2
0⟩1′⊗𝑉|𝑓2

0⟩2′ 

 |𝜓fin,1⟩  = √𝑎|𝑒1
1⟩1′⊗ |𝑓1

1⟩2′ + √1 − 𝑎|𝑒2
1⟩1′⊗ |𝑓2

1⟩2′, (3.8) 

where the ancillae have again been dropped from the notation for simplicity,  

 

|𝑒𝑖
1⟩1′ = 𝑊|𝑒𝑖

0⟩1′, |𝑓𝑖
1⟩2′ = 𝑉|𝑓𝑖

0⟩2′, 𝑖 = 1,2. 
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The geometry of the initial states and final states of Figure 3.4 is illustrated in Figure 

3.10 in terms of the Schmidt decomposition; the ancillae are not affected by the 

Schrödinger unitary and are not shown. The two orthogonal vectors {|𝑒1
0⟩1′ , |𝑒2

0⟩1′} are 

seen to be rotated into {|𝑒1
1⟩1′ , |𝑒2

1⟩1′} and similarly {|𝑓1
0⟩1′ , |𝑓2

0⟩1′} are rotated into 

{|𝑓1
1⟩1′ , |𝑓2

1⟩1′}. The geometry of orthogonality is maintained as well as the 

relationships of the respective coefficients in the superposition given by √𝑎 and 

√1 − 𝑎.  
One can also examine the geometry of the Schrödinger unitary evolution of Figure 

3.4 in a manner similar to Figure 3.8. Shown in Figure 3.11 is the initial state 

geometry of the superposition in terms of the product states. 

The final entangled state under Schrödinger unitary evolution is illustrated in 

Figure 3.12. A comparison of Figure 3.11 with Figure 3.12 shows that the geometry 

between the vectors is the same; the two figures are related by rotation. If we assume 

the devices absorb the photon with probability, one which will be defined as a 100% 

absorbing device, it follows 

 

|𝑒1
1⟩1′ = |0⟩𝐵  ⊗ |𝜓1⟩1 

|𝑒2
1⟩1′ = |0⟩𝐵  ⊗ |𝜓0⟩1 

|𝑓1
1⟩2′ = |0⟩𝐶  ⊗ |𝜓0⟩2 

|𝑓2
1⟩2′ = |0⟩𝐶  ⊗ |𝜓1⟩2. 

One can then factor out the electromagnetic field in the final Schrödinger predicted 

state in Step 1, resulting in: 

 |𝜓fin,1⟩  = |0⟩⊗ (√𝑎 |𝜓1⟩1⊗ |𝜓0⟩2 + √1 − 𝑎|𝜓
0⟩1⊗ |𝜓1⟩2. (3.9) 

Figure 3.10: Geometry of the Schmidt states in the quantum measurement problem. 
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We will see from this latter expression that under Schrödinger unitary evolution, 

the entanglement that originally existed within the photon field has been swapped into 

entanglement between the initial and final device states. This also aids in explaining 

why Figure 3.11 and Figure 3.12 are both 2-dimensional planes.  

On the other hand, if the devices do not operate in the sense that a photon was 

either not absorbed 100% of the time by the device or has been re-emitted with some 

probability by the device, then the Schrödinger unitarily predicted final state can be an 

entangled state of field-device. One might consider a solution via post-selection such 

that only final states are further analyzed when the particular case in which no photon 

is found in the local electromagnetic field surrounding each device. However, it can be 

shown (Exercise 3.20 in the book or kindle version of theQMP) that such post-

Figure 3.12 Geometry of the final entangled superposition state in 

the quantum measurement problem. 

Figure 3.11 Geometry of the initial entangled superposition state composed 

of two product states in the quantum measurement problem. 



 

selection can still be problematic in that it is not guaranteed that the final states are 

orthogonal, i.e. |𝜓0⟩𝑖 ⊥ |𝜓
1⟩𝑖 (although there may exist initial states for which this 

orthogonality does occur). In order to consider the problem for all devices in full 

generality for arbitrary initial states, and particularly to illustrate the theory for 

specific device-particle models, each device and its local electromagnetic field as 

previously defined by Systems 1′ and 2′ will be considered. Unitarily it can be shown 

(Exercise 3.1 in the book or kindle version of theQMP) that these local joint systems 

do provide the desired orthogonality.  
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