Partial Density Matrices

Consider a bipartite composite system in a tensor product state given by $\rho=\rho_{1} \otimes \rho_{2}$. We denote the operation of partial trace $\operatorname{Tr}_{j} \rho$ whereby System j has been traced from ρ in a manner that $\operatorname{Tr}_{1} \rho=\rho_{2}, \operatorname{Tr}_{2} \rho=\rho_{1}$. Partial trace is a unique linear operator with these properties. It is useful to investigate how the density matrices of the various systems are affected by the 3-Step operations; herein the partial densities of Systems 1^{\prime} and 2^{\prime} are found after each of the three steps. Defining,

$$
\begin{aligned}
\rho_{\text {init }, 1^{\prime}} & \equiv \operatorname{Tr}_{2^{\prime}} \rho_{\text {init }} \\
\rho_{\text {init }, 2^{\prime}} & \equiv \operatorname{Tr}_{1}, \rho_{\text {init }} \\
\rho_{\text {photon }, B} & \equiv \operatorname{Tr}_{\mathrm{C}}\left|\psi_{\text {photon,PBS }}\right\rangle\left\langle\left\langle\psi_{\text {photon,PBS }}\right|\right. \\
\rho_{\text {photon }, C} & \equiv \operatorname{Tr}_{\mathrm{B}}\left|\psi_{\text {photon,PBS }}\right\rangle\left\langle\psi_{\text {photon,PBS }}\right|,
\end{aligned}
$$

it can be shown (Exercise 3.17 in the book or kindle version of theQMP)

$$
\begin{equation*}
\rho_{\text {init }, 1^{\prime}}=\rho_{\text {photon }, B} \otimes \rho_{r, 1}^{(0)} \tag{3.31}
\end{equation*}
$$

and similarly,

$$
\rho_{\text {init }, 2^{\prime}}=\rho_{\text {photon }, C} \otimes \rho_{r, 2}^{(0)}
$$

Consider the density matrix representation of the states $\left|e_{1}^{0}\right\rangle_{1^{\prime}}$ and $\left|e_{2}^{0}\right\rangle_{1^{\prime}}$ given by

$$
\begin{aligned}
& \rho_{1,1^{\prime}}^{(0)} \equiv|1\rangle_{B B}\langle 1| \otimes \rho_{r, 1}^{(0)} \\
& \rho_{2,1^{1}}^{(0)} \equiv|0\rangle_{B B}\langle 0| \otimes \rho_{r, 1}^{(0)} .
\end{aligned}
$$

The Schrödinger's equation unitary evolution of $\rho_{\text {init }}$ is given by

$$
\rho_{\mathrm{fin}, 1}=(I \otimes W \otimes I \otimes V) \rho_{\mathrm{init}}(I \otimes W \otimes I \otimes V)^{\prime},
$$

where the identity matrices apply to the ancilla qubits. It follows that the density matrix representations of the evolves states $\left|e_{1}^{1}\right\rangle_{1^{\prime}}$ and $\left|e_{2}^{1}\right\rangle_{1^{\prime}}$ can be written

$$
\begin{aligned}
& \rho_{1,1^{\prime}}^{(1)}=W \rho_{1,1^{\prime}}^{(0)} W^{\prime} \\
& \rho_{2,1^{\prime}}^{(1)}=W \rho_{2,1^{\prime}}^{(0)} W^{\prime} .
\end{aligned}
$$

It can be shown (Exercise 3.18 in the book or kindle version of theQMP) after Step 1, the density matrix of System 1^{\prime} denoted $\rho_{1^{\prime}}^{(1)}$ is

$$
\begin{equation*}
\rho_{1^{\prime}}^{(1)}=a \rho_{1,1^{\prime}}^{(1)}+(1-a) \rho_{2,1^{\prime}}^{(1)} . \tag{3.32}
\end{equation*}
$$

Step 2 is applied, for which the resulting density matrix is given by

$$
\rho_{\mathrm{fin}, 2} \equiv(X \otimes Y) \rho_{\mathrm{fin}, 1}(X \otimes Y)^{\prime}
$$

Now, for the case of pure states, X maps both $\rho_{1,1^{\prime}}^{(1)}$ and $\rho_{2,1^{\prime}}^{(1)}$ to $\rho_{1,1^{\prime}}^{(1)}$. Hence the density matrix of System 1^{\prime} denoted $\rho_{1^{\prime}}^{(2)}$ becomes

$$
\begin{aligned}
& \rho_{1^{\prime}}^{(2)}=\operatorname{Tr}_{A_{1}} X\left(|0\rangle_{A_{1} A_{1}}\langle 0| \otimes \rho_{1^{\prime}}^{(1)}\right) X^{\prime} \\
& \rho_{1^{\prime}}^{(2)}=\rho_{1,1^{\prime}}^{(1)}
\end{aligned}
$$

After Step 2, the density matrix of Qubit 1 is

$$
\rho_{A_{1}}^{(2)}=\operatorname{Tr}_{1^{\prime}} X\left(\rho_{A_{1}}^{(1)} \otimes \rho_{1^{\prime}}^{(1)}\right) X^{\prime}
$$

which is found to be

$$
\rho_{A_{1}}^{(2)}=a|0\rangle_{A_{1} A_{1}}\langle 0|+(1-a)|1\rangle_{A_{1} A_{1}}\langle 1| .
$$

Step 3 is the application of the observables representing Bell's experiment. Each of these observables can be written as a (different) tensor product $\mathcal{O}=\mathcal{O}_{1} \otimes \mathcal{O}_{2}$ that is applied to the two ancilla qubits. Step 3 yields the expected value $\mathcal{E}\left(\rho_{\text {init }}, \mathcal{O}\right)=$ $\operatorname{Tr}\left(\left(\mathcal{O}_{1} \otimes \mathcal{O}_{2}\right) \rho_{A_{1}, A_{2}}\right)$, where $\rho_{A_{1}, A_{2}}$ is the joint state of the composite system of the two ancillae after Step 2.

