
 

Specification of Operations 

Equation (3.8) will be the starting point for the Step 2 operation. In Step 2 local 

unitary operations will be applied that evolve Equation (3.8) to a state for which the 

entanglement that was present between the two devices is swapped to create 

entanglement between the two ancilla qubits. Step 3 is to perform a Bell measurement 

on the two qubits. At this point, the two ancilla qubits are included in the description 

of |𝜓fin⟩ resulting in, 

 

|𝜓𝑓𝑖𝑛,1⟩  = √𝑎|0⟩𝐴1⊗ |𝑒1
1⟩1′⊗ |0⟩𝐴2⊗ |𝑓1

1⟩2′ +

√1 − 𝑎|0⟩𝐴1⊗ |𝑒2
1⟩1′⊗ |0⟩𝐴2⊗ |𝑓2

1⟩2′. 
(3.10) 

The operations that are desired in Figure 3.4 are such that they will enable the 

discrimination between the hypotheses in Tests 3.1 and 3.2. Firstly, we will develop 

the procedure needed for addressing Test 3.2; it will be seen later that the same 

procedure also suffices to enable the discrimination of the hypotheses in Test 3.1.  

A reasonable question is whether or not the entanglement that is unitarily predicted 

between System 1′ and 2′ can necessarily be transferred to the qubits in Step 2. Note 

that as 𝑈 = (𝐼 ⊗𝑊)⊗ (𝐼 ⊗ 𝑉) in Step 1, one could simply choose the Step 2 

operation to be 𝑈−1 = (𝐼 ⊗𝑊−1)⊗ (𝐼 ⊗ 𝑉−1), which reverses the original 

interaction and transfers the entanglement back to the photon field. Continue by 

interacting the local fields B and C in a manner that transfers the entanglement 

between the single photon and the qubits similar to the approach taken in [101]. This 

shows that it is always possible to find a local Step 2 operation, by reversing the 

original interaction and transferring the photon superposition into two-qubit 

entanglement.  

However, there are several reasons to consider if it is possible to transfer the 

entanglement without reversing the original detector-field unitary operation. For 

example, one might object to such inverse methodology as being at the very least 

extremely difficult as it requires the implementation of a new Hamiltonian that 

accomplishes the complete time-reversal of the naturally occurring process of the 

original interaction. Another important reason is that it is desirable to work towards 

implementable techniques that can discriminate unitary evolution from measurement. 

As well, there are theories that will be examined in Chapter 4 that maintain that the 

measurement problem is resolved by certain naturally occurring unitary processes that 

ultimately cannot be reversed. With these reasons in mind, we will not allow the 

consideration of Step 2 unitary operations that require the time-reversal of the 

detector. If there are terms in the device state after Step 1 for which the device has 

evolved from an initial state to a final state (or in the case of a mixed initial device 

state from an initial eigenstate of the device to a final state), the only operations that 

will be considered allow the device to remain in such states or evolve further in time 

via the original unitary.  

The final vectors in Figure 3.12 lie in a 2-dimensional plane. These vectors are 

typically in a high dimensional subspace determined by the particles that compose the 
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detectors. We begin by showing there exists a local unitary matrix that rotates these 

vectors into any two natural Euclidean basis vectors, as any two such basis vectors 

also form a two-dimensional space, which can contain the plane of the final vectors. 

This operation will be implemented between the particles that compose each device 

and the respective local qubit, as shown in Figure 3.13. 

 

Define 

𝑇1 = (|1⟩𝐴1⊗ |𝑒1
1⟩1′)(⟨0|𝐴1⊗ 1′ ⟨𝑒1

1|) + (|0⟩𝐴1⊗ |𝑒1
1⟩1′)(⟨0|𝐴1⊗ 1′ ⟨𝑒2

1|) 

  

𝑇2 = (|1⟩𝐴2⊗ |𝑓2
1⟩2′)(⟨0|𝐴2⊗2′ ⟨𝑓2

1|) − (|0⟩𝐴2⊗ |𝑓2
1)⟩2′)(⟨0|𝐴2⊗ 2′ ⟨𝑓1

1|) 

 
(3.11) 

 

where |0⟩𝐴1, |1⟩𝐴1 are natural basis vectors of the ancilla qubit (a second ancilla qubit 

is similarly required for System 2′),  

|0⟩𝐴1 = (
1
0
),  |1⟩𝐴2 = (

0
1
). 

As it was assumed that both System 1 and 2 have dimension 𝑁, 𝑇1 and 𝑇2 are 2𝑁 

by 2𝑁 matrices with 2 non-zero rows. 𝑇1 will have the effect of mapping |0⟩𝐴1 ⊗ 

|𝑒1
1⟩1′  to |1⟩𝐴1 ⊗ |𝑒1

1⟩1′  and |0⟩𝐴1 ⊗ |𝑒2
1⟩1′ to |0⟩𝐴1⊗ |𝑒1

1⟩1′, where |1⟩1 ∈ ℋ1. Note that 

this operation has similar functionality as a controlled-not operation commonly 

Figure 3.13 Operation of interaction between the particle composing each 

device and the respective ancilla qubits and local electromagnetic field.  



 

encountered in quantum computing, although applied to a device rather than a qubit. 

Consider the specification of a unitary matrix 𝑋 as an extension of T1 and 𝑌 as an 

extension of T2 (the 𝑋 and 𝑌 extensions do not need to be identical). Let 𝑋 have the 

same two non-zero rows as T1 and 𝑌 the same two non-zero rows as T2. The rows of 𝑋 

will be orthonormal if and only if |𝑒1
1⟩1′ is orthogonal to |𝑒1

2⟩1′ . Note from the previous 

discussion regarding efficient detection, such orthogonality is a reasonable assumption 

for the device state of many realistic detectors; however, there exist models for which 

orthogonality is not guaranteed, which is why we extended Systems 1 and 2 to 

Systems 1′ and 2′ respectively. Assuming these rows are orthonormal, one can 

complete 𝑋 (and similarly 𝑌) by adding 2𝑁 − 2 rows such that all rows form a 

complete basis of the 2𝑁 dimensional linear vector space. As the rows form a 

complete orthonormal basis and the matrices are square, 𝑋 and 𝑌 are also unitary. 

Note that we chose to map both |𝑒1
1⟩1′ and |𝑒1

2⟩1′  to |𝑒1
1⟩1′  in the Hilbert space ℋ1. 

However, it can be shown for the case when the initial detector state is pure (Exercise 

3.3 in the book or kindle version of theQMP) that an arbitrary state in ℋ1 could have 

been chosen (and similarly for System 2). Conditions that the chosen final states must 

meet when the initial detector state is mixed are examined in Exercise 3.14 in the book 

Figure 3.14: The unitarily evolved Schmidt vectors in Systems 1′ are shown in 

Figures (a), (b) operated on by 𝑋 causing the initial ancilla qubit 1 in Figure (c) to 

evolve to Figure (d) in a manner that retains the coefficients √𝑎, √1 − 𝑎 of the initial 

state of System1′ in Figure (a). A similar diagram is found for System 2′ via the 

transformation 𝑌𝑡. 
 

 



 

or kindle version of theQMP. 

Let 𝑋 be such a 2𝑁 by 2𝑁 extension of T1 and 𝑌 an extension of T2 (the 𝑋 and 𝑌 

extensions do not need to be identical). The geometrical effect of 𝑋 is to transfer the 

quantum state coefficients of the vectors {|𝑒1
1⟩, |𝑒2

1⟩} into the coefficients of the natural 

vectors of the ancilla qubit 𝐴1, as seen in Figure 3.14. Step 2 is to apply 𝑋⊗ 𝑌 to 

Equation (3.10) resulting in 

 

|𝜓𝑓𝑖𝑛,2⟩  ≡ (𝑋⊗ 𝑌) |𝜓𝑓𝑖𝑛,1⟩  (3.12) 

|𝜓fin,2⟩  = √𝑎|1⟩𝐴1⊗ |𝑒1
1⟩1′  ⊗ |0⟩𝐴2⊗ |𝑓2

1⟩2′ +√1 − 𝑎|0⟩𝐴1⊗ |𝑒1
1⟩1′  ⊗ |1⟩𝐴2

⊗ |𝑓2
1⟩2′  . 

This can be rewritten by swapping the second and third systems:  

= √𝑎|1⟩𝐴1⊗ |0⟩𝐴2⊗ |𝑒1
1⟩1′  ⊗ |𝑓2

1⟩2′ + √1 − 𝑎|0⟩𝐴1⊗ |1⟩𝐴2⊗ |𝑒1
1⟩1′  ⊗ |𝑓2

1⟩2′ 

for which the state of the detector particles can be factored out: 

  = {√𝑎|1⟩𝐴1⊗ |0⟩𝐴2 − √1 − 𝑎|0⟩𝐴1⊗ |1⟩𝐴2} ⊗ |𝑒1
1⟩1′  ⊗

      |𝑓2
1⟩2′, 

(3.13) 

which includes our desired 2-qubit entangled state (in the first two systems).  

Now that Step 2 has been completed, a standard Bell experiment is required to be 

implemented on the two ancillae for completion of Step 3 (utilized in the 

quantification of the Bell inequality), as shown in Figure 3.15. 

Note that the unitary operations that are utilized in Step 2 are not of the form of the 

time-reversal of the unitary that occurred in Step 1. Hence it has been demonstrated 

that the entanglement can be unitarily transferred without the impediment of requiring 

a large-scale time-reversal, which was a desired property of the operation for the 

reasons discussed previously. We will refer to the use of Figure 3.4 along with device 

Hamiltonian and the Step 1, 2, and 3 operations that have now been fully specified as 

a unitary versus measurement discrimination test (UMDT).  
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