
 

Specific Device-Particle Modeling 

In Equation (3.1), a general class of Hamiltonians was considered for which a UMDT 

can be defined. Now, a specific Hamiltonian model of device-particle is considered 

both to illustrate how to apply these operations and also to understand how these 

operations address Hypothesis Tests 3.1 and 3.2.  

Given that a single photon has impinged on the two devices as in Figure 3.4 

assuming the Step 1 Schrödinger unitary evolution in Hypothesis 𝐻0 is common in 

both Hypothesis Tests 3.1 and 3.2, the state will evolve to Equation (3.9). Step 2 is to 

apply the local unitary 𝑋 to Device 1 and 𝑌 to Device 2 that swaps the unitarily 

predicted entanglement between System 1′ and System 2′, into entanglement between 

the two ancilla qubits 𝐴1 and 𝐴2. Step 3 is to conduct a Bell measurement on these 

two qubits.  

Consider first a model for which each device is composed of two spin ½ particles 

with states that lie in a 4-dimensional Hilbert space. The relevant electromagnetic field 

in Figure 3.4 can be specified by the B and C photon modes and the two polarization 

modes for which the states lie in a 4-dimensional Hilbert space.  

 The Hamiltonian then is given by, 

 
𝐻 = 𝐻𝐹 ⊗ 𝐼4  ⊗ 𝐼4 + 𝐼4⊗𝐻1⊗ 𝐼4 + 𝐼4⊗ 𝐼4⊗𝐻2 +𝐻𝑖𝑛𝑡 (3.14) 

where 𝐼𝑗 is the 𝑗 by 𝑗 identity matrix. Denote the spin ½ operators in terms of the Pauli 

matrices and raising and lowering operators as 

Figure 3.15: Step 3: Bell measurement on Ancilla Qubits. 
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We consider a two-spin Heisenberg model for the Hamiltonian of each device 

 𝐻𝑖 = 𝛺1,𝑖𝑆𝑧⊗ 𝐼2 + 𝛺2,𝑖𝐼2⊗𝜎𝑧 + 𝐽𝑥,𝑖𝑆𝑥⊗𝑆𝑥 + 𝐽𝑦,𝑖𝑆𝑦⊗𝑆𝑦
+ 𝐽𝑧,𝑖𝑆𝑧⊗𝑆𝑧. 

(3.15) 

Note that interactions between the particles composing each device have been 

included via {𝐽𝑥,𝑖 , 𝐽𝑦,𝑖 , 𝐽𝑧,𝑖}. The relevant electromagnetic field free Hamiltonian is 

given by 

 

𝐻𝐹 = 𝑤𝑎𝐵
†𝑎𝐵⊗ 𝐼2 +𝑤𝐼2⊗𝑎𝐶

†𝑎𝐶 , 
 

where 𝑎𝐵
† (𝑎𝐵) is an operator that creates (annihilates) a photon of vertical 

polarization in the B Port of the beam splitter shown in Figure 3.4 and 𝑎𝐶
†(𝑎𝐶) creates 

(annihilates) a photon of horizontal polarization in the C Port of the beam splitter. The 

cases of a horizontally polarized photon in the B output port or vertical polarized 

photon in the C Port can be included if desired; however, as the input to the beam 

splitter in the Z Port of Figure 3.1 is assumed to be the vacuum state, such states 

cannot occur via Schrödinger’s equation.  

Consider the following field-particle interaction model, 

 

𝐻𝐹,1 = 𝑐1(𝑎𝐵⊗ 𝐼2⊗𝑆+⊗ 𝐼2⊗ 𝐼4 + 𝑎𝐵
†⊗ 𝐼2⊗𝑆−⊗ 𝐼2⊗ 𝐼4) 

𝐻𝐹,2 = 𝑐2(𝐼2⊗𝑎𝑐⊗ 𝐼4⊗𝑆+⊗ 𝐼2 + 𝐼2⊗𝑎𝐶
†⊗ 𝐼4⊗𝑆−⊗ 𝐼2) 

 

for which 𝐻𝑖𝑛𝑡 = 𝐻𝐹,1 + 𝐻𝐹,2. These interaction terms have the effect of interacting 

the photon mode that impinges on a device with the first of the two spin particles that 

compose the device. However, as the two spins that compose that device can 

themselves interact via the coefficients {𝐽𝑥,𝑖 , 𝐽𝑦,𝑖 , 𝐽𝑧,𝑖} in Equation (3.15) a photon that 

impinges on a device can affect both particles.  

 Let the initial state of the ancillae, EM field, Device 1, Device 2 be 

 

 |𝜓init⟩  = √𝑎|0⟩𝐴1⊗ |1𝑉⟩𝐵⊗ |𝜓𝑟
0⟩1⊗ |0⟩𝐴2⊗ |0𝐻⟩𝐶⊗ |𝜓𝑟

0⟩2

+ √1 − 𝑎|0⟩𝐴1⊗ |0𝐻⟩𝐵⊗ |𝜓𝑟
0⟩1⊗ |0⟩𝐴2⊗ |1𝐻⟩𝐶

⊗ |𝜓𝑟
0⟩2 

(3.16) 

where |𝜓𝑟
0⟩𝑖 ∈ ℋ𝑖  , i=1,2, 𝒟(ℋ𝑖) = 2,  

 

|0⟩  ≡ (
1
0
) , |1⟩  ≡ (

0
1
). 
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Consider the initial device states of |𝜓𝑟
0⟩1 = |0⟩ ⊗ |0⟩, |𝜓𝑟

0⟩2 = |0⟩ ⊗ |1⟩. The 

Schrödinger unitary evolution operator to be applied to |𝜓init⟩ is given by 

 

𝑈(𝑡) = 𝑒−𝑖𝐻𝑡 = (𝐼 ⊗𝑊)⊗ (𝐼 ⊗ 𝑉). 
 

For a fixed Schrödinger unitary evolution time 𝑡 = 𝜏𝑒, the initial state is evolved in 

Step 1 to |𝜓fin,1⟩  =  𝑈(𝜏𝑒)|𝜓init⟩ or 

 

|𝜓fin,1⟩  = √𝑎 |0⟩𝐴1⊗ |𝑒1
1⟩1′⊗ |0⟩𝐴2⊗ |𝑓1

1⟩2′ + √1 − 𝑎|0⟩𝐴1⊗ |𝑒2
1⟩1′⊗ |0⟩𝐴2

⊗ |𝑓2
1⟩2′ . 

 

The operators 𝑇1and 𝑇2 of Step 2 are used to transfer the entanglement between 

Systems 1′ and 2′ to entanglement between the two ancilla qubits: 

 

𝑇1 = (|1⟩𝐴1⊗ |𝑒1
1⟩1′)(⟨0|𝐴1⊗ 1′ ⟨𝑒1

1|) + (|0⟩𝐴1⊗ |𝑒1
1⟩1′)(⟨0|𝐴1⊗ 1′ ⟨𝑒2

1|) 

𝑇2 = (|1⟩𝐴2⊗ |𝑓2
1⟩2′)(⟨0|𝐴2⊗2′ ⟨𝑓2

1|) − (|0⟩𝐴2⊗ |𝑓2
1⟩2′)(⟨0|𝐴2⊗ 2′ ⟨𝑓1

1|). 

 
The vectors |𝑒𝑖

1⟩1′ , |𝑓𝑖
1⟩1′ , 𝑖 = 1,2 can be computed from Equation (3.8) and for this 

model are: 

 

|𝑒1
1⟩1′  = 𝑊|1𝑉⟩𝐵  ⊗ |0⟩ ⊗ |0⟩, |𝑒2

1⟩1′ = 𝑊|0𝑉⟩𝐵⊗ |0⟩  ⊗ |0⟩ 

|𝑓1
1⟩2′ = 𝑉 |0𝐻⟩𝐶  ⊗ |0⟩  ⊗ |0⟩, |𝑓2

1⟩2′ = 𝑉 |1𝐻⟩𝐶  ⊗ |0⟩ ⊗ |0⟩. 

 

Upon extending 𝑇1 and 𝑇2 to unitary matrices via the procedure previously shown, i.e., 

adding orthogonal rows to complete the basis, we arrive at 𝑋 and 𝑌. Applying the 

unitary 𝑋⊗ 𝑌 to |𝜓fin⟩ will transfer the state in the two ancilla qubits to become 

entangled at the expense of the loss of entanglement between Systems 1′ and 2′. 
In Step 3, a Bell experiment is performed on the two ancilla qubits. Steps 1 and 2 

were simulated for 𝑡 = .4 using the Hamiltonian parameters 𝑤 = 2, 

{Ω1,1,Ω2,1,,Jx,1, Jy,1, Jz,1} = {. 5, .2, .1, .3, .5} and {𝛺1,2,𝛺2,2,,𝐽𝑥,2, 𝐽𝑦,2, 𝐽𝑧,2} =

{. 3, .4, .7, .2, .6}. Two initial device states were chosen as |𝜓𝑟
0⟩1 = |0⟩⊗ |0⟩, |𝜓𝑟

0⟩2 =

|0⟩⊗ |1⟩. Results of the Bell experiment are given in terms of the CHSH sum in 

Figure 3.16 for both the Step 1 Schrödinger unitary prediction for t=.4 and under an 

assumption that the photon takes a definite path via either the B or C Port. One sees 

that the CHSH sum is always greater than the case of a known photon path, for any 

initial superposition of the photon. Furthermore, the CHSH sum is the same 

independent of the initial state, the time of the unitary evolution, the number of 

particles composing the devices, the interactions within the device, the interactions 

between the photon and particles composing the device. In short, the argument given 

is rigorous. 

Since the entanglement has been transferred to the two ancilla qubits, the unitary 

prediction can also be calculated analytically using a two-qubit version of the CHSH 

inequality [102] 

http://theqmp.com/wp-content/uploads/Ch3/Ch3GMP.pdf#page=2


 

 𝑆 = |𝐶̂(𝑎, 𝑏) + 𝐶̂(𝑎, 𝑏́) + 𝐶̂(𝑎́, 𝑏) − 𝐶̂(𝑎́, 𝑏́)| ≤ 2,  (3.17) 

where 𝑎, 𝑎́ and 𝑏, 𝑏́ are the two-valued variables (±1) for the first and second qubits 

respectively. Quantum mechanically, the correlation between a and b is given in terms 

of the system density matrix 𝜌 and the Hermitian operators 𝑎̂ and 𝑏̂ corresponding to a 

and b: 

 

 Ĉ(𝑎, 𝑏) = Tr(𝜌(𝑎̂⨂𝑏̂)). (3.18) 

The two-qubit measurement settings corresponding to the polarization measurement 

settings of Equation (3.3) can be shown to be given by 

 

 𝑎 = 𝜎𝑧, 𝑎́ = 𝜎𝑥 (3.19) 

 𝑏 =
𝜎𝑧+𝜎𝑥

√2
, 𝑏́ =

𝜎𝑧−𝜎𝑥

√2
. (3.20) 

Using the entangled pure state 

 |𝜓⟩ = √𝑎|00⟩ + √1 − 𝑎|11⟩, (3.21) 

Figure 3.16: CHSH Sum versus degree of photon superposition, 

Unitary CHSH sum is 2√2 𝑎𝑡 𝑎 = .5 whereas for known photon 

path of either |𝜓1⟩1⊗ |𝜓0⟩2 or |𝜓0⟩1⊗ |𝜓1⟩2 the CHSH sum is 

√2 as seen in the dotted curve, independent of 𝑎.  

http://theqmp.com/wp-content/uploads/Ch3/Ch3BellsInequality.pdf#page=2


 

the CHSH sum for the two ancillary qubits is found from the above equations to be 

 

𝑆 = √2(1 + 2√𝑎(1 − 𝑎)). (3.22) 

As expected, Equation (3.22) is the same as the simulation of the unitary prediction in 

Figure 3.16. The entanglement between two qubits can be quantified in terms of 

Wootters’ concurrence [103] which, for the pure state of Equation (3.21) is given by 

 ℂ = 2√𝑎(1 − 𝑎) (3.23) 

so that the CHSH sum can be rewritten as 

 𝑆 = √2(1 + ℂ). (3.24) 

The CHSH sum for the known photon path is 

 𝑆𝐶𝑙 = √2. (3.25) 

Therefore, at this measurement setting, the fractional difference between the unitary 

and known photon path CHSH sums is exactly given by the entanglement of the state 

in the form of the concurrence 

 

 
𝑆𝑈−𝑆𝐶𝑙

𝑆𝐶𝑙
= ℂ. (3.26) 

The CHSH sum in Equation (3.24) also results using a mixed state 𝜌 with the same 

concurrence ℂ(𝜌) = 2√𝑎(1 − 𝑎). This can be seen from the result [103] that a mixed 

state of two qubits can be decomposed into a convex sum of pure states, all with 

concurrence equal to the concurrence of the mixed state 

 

 𝜌 =∑𝑐𝑖|𝜓𝑖⟩⟨𝜓𝑖|

𝑖

 (3.27) 

with ∑ 𝑐𝑖 = 1𝑖 . Since each |𝜓𝑖⟩ is unitarily equivalent to a Schmidt decomposition of 

the form of Equation (3.21), the properties of the trace in Equation (3.18) imply that 

the mixed state CHSH sum is identical to that of the pure state result in Equation 

(3.24) at this measurement setting 

 

 𝑆𝜌 = √2(1 + ℂ(𝜌)) = √2(1 + 2√𝑎(1 − 𝑎)). (3.28) 
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