
 

Bohm’s Theory  

Bohm’s theory is one of the several early attempts to come to grips with the 

measurement postulate that fall within the class of no-collapse theories in which it is 

desired to explain measurement without use of the measurement “collapse” postulate. 

In Bohm’s theory, the Schrödinger wave function does not represent the particles’ 

actual trajectory, but rather all possible trajectories that could occur. Bohm uses the 

Schrödinger wave function to derive a quantum potential which acts on and guides the 

particle with a force and for which the particle’s velocity can be derived.  

Bohm’s theory is unique in that it includes aspects of Schrödinger’s equation and 

also incorporates a spatially localized trajectory that the particle is said to follow. 

Consider Schrödinger’s equation given by 

 

 
𝑖ℏ
𝜕𝜓

𝜕𝑡
= (−

ℏ2

2𝑚
𝛻2 + 𝑉)𝜓. (4.16) 

The wave function is generally complex and can be written as 𝜓 = 𝑅𝑒𝑖𝑆/ℏ, where 𝑅 is 

a real time varying function. The probability of measurement under Born’s 

interpretation is |𝜓|2 which is a function of 𝑅. Substituting 𝜓 = 𝑅𝑒𝑖𝑆/ℏ into Equation 

(4.16) and taking the real part of both sides yields 
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When ℏ = 0 this is a classical Hamilton-Jacobi equation where 𝑆 is the action. If one 

considers a modified potential 
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then a solution to Equation (4.17) would also constitute a solution to the original 

Schrödinger equation. In such a case, the velocity of the particle can be derived from 

the Hamilton-Jacobi equation as 𝑣(𝑥, 𝑡) = ∇𝑆(𝑥, 𝑡)/𝑚. The right-hand side of 

Equation (4.17) is only a function of the action 𝑆 and the potential 𝑉. Equation (4.17) 

can also be interpreted as a modified Hamiltonian-Jacobi equation where 𝑆 is the 

action resulting from a classical potential V and a newly added quantum potential Q  

 

 
𝑄 = −

ℏ

2𝑚

𝛻2𝑅

𝑅
. 

(4.18) 

 

 

Note that the quantum potential is a function of 𝑅 which is related to the Born 

probability of measurement. This is a rather interesting result by Bohm and at this 

stage indeed shows promise for resolving the measurement problem. One can derive 

from the quantum potential 𝑄 a force 𝐹 = −∇𝑄 for which the particles are guided by 

the quantum potential which is in addition to the force on the particle by the potential 

𝑉. The particle will have a well-defined position at all times but will experience a 



 

force as a function of the quantum potential. The quantum potential is in general non-

local. Bohm’s theory is an example of a non-local hidden variables theory. 

This theory is of the type where you can “have your cake and eat it too.” Particles 

travel in a classical manner yet are guided by a non-classical wave function so that the 

results of measurement would seem to occur in a natural manner. Suppose a theory 

exists such as Bohm’s theory for which particles always take particular trajectories 

that interact with one and only one detector. By imposing a quantum potential that 

now guides particles in a local manner, one might expect that the measurement 

problem can be resolved. It is indeed true that the particles under Bohm’s theory can 

be thought of as guided by a force that is a function of the potential 𝑉 and also 𝑅 in a 

manner that the particle obeys Born’s rule. The particles require an initial position as 

if chosen from the probabilistic density function |𝜓|2 and also requires a probabilistic 

initial velocity that is a function of the wave function and current density. This then 

might appear to be a methodology for which the measurement postulate is not actually 

needed as the particles already are taking classical paths. In this case some incorrectly 

conclude that, simply because such a theory exists, the measurement problem can be 

relegated to an interpretational problem and is not a problem that could have any 

significant consequences upon its solution.  

The main objective of this chapter is for the reader to further learn how to discern 

correct approaches from incorrect approaches regarding the measurement problem. 

The devil is in the details, and because of the subtleties involved, Bohm’s theory 

presents an excellent opportunity to analyze. With this in mind, it is interesting to note 

that in the 1984 paper by Bohm [151], in a section entitled “The Quantum Mechanical 

Process of Measurement” where he considers the measurement problem, Bohm 

divides the measurement process into two stages. 

 

 See the print edition of The Quantum Measurement Problem for quotation. 

 

Bohm [151] gives an example of an in-principle reversible interaction, as the 

interaction of the angular momentum of an electron in an inhomogeneous magnetic 

field. That is, the electron might be in a superposition of different spin states for which 

the paths through the magnetic field would separate the electron. Bohm states that the 

packets of the electron can fully separate. However, Bohm does agree there is a 

problem at this point to apply the measurement postulate because it is possible to 

recombine the packets together. He states, “It is therefore clear that we have not yet 

explained the irrevocability of the experimental results…” Bohm goes on to explain 

that it is only in the second stage for which there is an irreversible registration that 

there is a result of measurement. That the new quantum state can be said to occur, 

“when the reversal is overwhelming improbable.” Bohm goes on to justify this on the 

basis of irreversibility found in macroscopic systems via thermodynamics. Bohm adds  

a further requirement to his theory: he requires at this point that when the  

 

… quantum potential of the whole system is calculated, the apparatus 

wave function alone will guarantee that the packet not corresponding 



 

to the actual result can be left out of the discussion. Clearly it is the 

irreversibility of the process of registration that further guarantees 

that this conclusion will continue to be valid in the future.... We are 

thus led to the conclusion that the packets not containing this particle 

now correspond to inactive information. This is essentially what 

happens in classical solutions involving probability distributions. In 

such situations, after a new observation is made, we simply discard 

the previous probability function. 

 

One might agree that irreversibility is related to the solution to the measurement 

problem as Bohm suggests, but this is not what modern papers concentrate on when 

utilizing Bohm’s theory to explain measurement. On the contrary, modern authors 

generally focus mostly on the theory without the two-step process as a resolution of 

the measurement problem. In fact, the two-step process that Bohm proposes is either 

left out entirely of the discussion by the proponents of Bohm’s theory for resolving the 

measurement problem, or it is buried in a few lines in a manner that few would have 

suspected could play such a huge role. Consider Holland [5, p. 349] in which the two-

stage process by Bohm is considered: 

 

The complexity of the interaction gives it the appearance of being 

irreversible but the underlying dynamical law bringing about the 

wave function remains the reversible Schrödinger equation. That the 

process so described is not actually irreversible may be considered a 

weak point in our demonstration. 

 

Using a reversible process to demonstrate an irreversible process does appear to be a 

rather weak point. Holland isn’t finished however. Holland makes the statement 

regarding the Stage 2 requirement of Bohm: 

 

As we have presented it, the theory of measurement may be 

understood without first answering fundamental questions regarding 

the nature of irreversibility. 

 

If Holland’s statement is correct, one might conclude that the measurement problem is 

also resolved by Bohm’s theory without the Stage 2 requirement of Bohm. The latter 

statement by Holland refers to, “the theory of measurement.” The current von 

Neumann theory of measurement is an a posteriori theory of measurement, i.e., given 

that a measurement has been made, the results must agree with Born’s rule. In the 

sense that Bohm’s theory is an a posteriori theory, it does indeed reproduce the results 

of measurement and resolves the philosophers’ measurement problem. However, it 

does not yet meet the requirements of resolving the physical measurement problem.  

In addition to Holland there are others that believe that Bohm’s theory resolves the 

measurement problem [152] [153] [114] [154]. Dürr et al. states [155]: 
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Holland’s and Dürr’s statements are correct in the sense that Bohm’s theory 

provides a deterministic model that is consistent with the results of the measurement 

postulate given that a measurement has occurred. Hence, they can rest knowing that 

they have a solution to the philosophers’ measurement problem. But as has been 

stated, von Neumann quantum theory is an a posteriori theory and the measurement 

problem as we define it, requires one to provide a scientifically validated theory that 

explains the dichotomy between the entanglement predictions of Schrödinger’s 

equation versus the product state prediction without pre-assuming that measurement 

has occurred. While it is true that Bohm’s theory is a solution to the philosophical 

measurement problem, at best it can be considered only one out of many approaches 

regarding the physical measurement problem. Bohm’s theory does not come close to 

having been scientifically validated to meet the requirements that we have set in 

resolving the physical measurement problem. 

Historically one might consider that there are two “measurement problems.” 

Whereupon Schrödinger developed his new equation in 1926 and was invited to 

Bohr’s home, Bohr argued with Schrödinger that a deterministic equation would not 

suffice and that the quantum of action of Planck demanded a non-causal or 

nondeterministic element to explain various phenomena. Born’s probabilistic rule was 

developed shortly thereafter to explain the results of measurement. This satisfied Bohr 

and became part of the Copenhagen interpretation. Let us suppose that historically 

after Born’s rule was proposed, that Schrödinger had available Bohm’s theory. Then 

Schrödinger could argue with Bohr that Bohm’s theory without irreversibility does 

reproduce the results of measurement in a deterministic manner and that Born’s rule is 

only needed due to the ignorance of unknown initial conditions. Bohmian mechanics 

is a deterministic counterexample that shows Bohmian mechanics reproduces both 

unitary evolution and the measurement postulate, for which the measurement postulate 

is a formulation of what to do given that a measurement has occurred. If one defines 

the measurement problem in a manner that can be resolved via a theory that 

demonstrates in a deterministic manner Born’s rule a posteriori given that a 

measurement occurs while maintaining unitary evolution, then Bohmians can go to 

sleep at night content they have solved the measurement problem. And it has been said 

that ignorance is bliss. But it also has been said that bliss is ignorance.  

In 1935, Schrödinger published two important papers [156] [119]. Schrödinger 

states in [119] 

As soon as the systems begin to influence each other, the combined 

function ceases to be a product and moreover does not again divide 

up, after they have again become separated, into factors that can be 

assigned individually to the systems. Thus one disposes provisionally 

(until the entanglement is resolved by an actual observation of) of 

only a common description of the two in that space of higher 

dimension.  



 

Schrödinger is acknowledging that his equation predicts that an initial product state of 

photon and a system become entangled and cannot be represented as a product state 

after separating. Schrödinger in the same paper also provides his famous example of 

such an entangled superposition even if one were to include a living cat as one of the 

systems. Furthermore, the phrase “is provisional until resolved by an actual 

observation,” is a statement that the entanglement is resolved only when a 

measurement occurs. The physical measurement problem, as we have defined it, is 

consistent with this latter issue, that is determining the conditions under which 

measurement occurs for which the Schrödinger entangled wave function is formally 

replaced by a product state. The physical measurement problem is not trivially 

resolved via assumption that a measurement has already occurred; rather we demand 

that a solution to the measurement problem provide the conditions under which a 

measurement occurs and the theoretical basis for such conditions. 

Bohm’s theory does reproduce Born’s rule as an a posteriori theory. But let us now 

analyze Bohm’s theory without irreversibility to see if does resolve the measurement 

problem, which requires one to dig deeper without skirting major issues. That 

Bohmian mechanics has little to offer in the sense that we have defined the 

measurement problem can be seen when Bohmians explain when they will change the 

wave function into a new wave function that is indicative of a measurement.  

In this regard, consider the treatment of the measurement process by Bohm’s 

theory in Orioles and Mompart [153, pp. 95-99]. The system is specified by a 

trajectory 𝑥⃗𝑆 and the apparatus by trajectory 𝑥⃗𝐴. The possible outcomes of the 

measurement process correspond to one of the possible eigenvalues 𝑔 of a Hermitian 

operator 𝐺̂ that satisfy the equation 𝐺̂𝜓𝑔(𝑥⃗𝑆) = 𝑔𝜓𝑔(𝑥⃗𝑆). The system wave function  

can be decomposed via the eigenstates of 𝐺̂, 

𝜓𝑆(𝑥⃗𝑆, 𝑡) =∑𝑐𝑔(𝑡)𝜓𝑔(𝑥⃗𝑆).

𝑔

 

When measuring the eigenvalue 𝑔𝑎 the wave function 𝜓𝑆(𝑥⃗𝑆, 𝑡) needs to collapse to 

𝜓𝑔𝑎(𝑥⃗𝑆, 𝑡). In addition to the entire apparatus, the pointer of the apparatus is 

represented by 𝑥⃗𝑃(𝑡). When the quantum system is in an eigenstate 𝜓𝑔(𝑥⃗𝑆), the pointer 

is in a region 𝑆𝑔, i.e. 𝑥⃗𝑃(𝑡) ∈ 𝑆𝑔. A requirement is added that the pointer positions 

𝑥⃗𝑃(𝑡) of the apparatus are disjoint in the sense that if 𝑔1 and 𝑔2 are different 

eigenstates of 𝐺̂ then the pointer state trajectories are disjoint, i.e. 𝑆𝑔1 ∩ 𝑆𝑔2 = ∅. A 

total wave function Φ𝑇(𝑥⃗𝑆, 𝑥⃗𝐴, 𝑡) can then be defined that is decomposed over the 

possible outcomes of the experiment via the eigenvalues of 𝐺̂, 
 

𝛷𝑇(𝑥⃗𝑆, 𝑥⃗𝐴, 𝑡) =∑𝑐𝑔(𝑡) 𝑓𝑔(

𝑔

𝑥⃗𝐴, 𝑡) 𝜓𝑔(𝑥⃗𝑆). (4.19) 

with the property that 𝑓𝑔1(𝑥⃗𝐴, 𝑡) ∩ 𝑓𝑔2(𝑥⃗𝐴, 𝑡) = 0. Now, the Bohmian process of 

measurement is as follows. An initial trajectory is chosen {𝑥⃗𝑆(0), 𝑥⃗𝐴(0)} 



 

commensurate with a probabilistic outcome of the initial wave function positions of 

the system and apparatus. Such a trajectory will evolve with the total wave function, 

and during the measurement, the total trajectory {𝑥⃗𝑆(𝑡), 𝑥⃗𝐴(𝑡)} will correspond to only 

a single term of Equation (4.19) which corresponds to 𝑔 = 𝑔𝑎. It is stated [153, p. 97] 

 

Thus, the pointer positions will be situated in 𝑥⃗𝑃[𝑡] ∈ 𝑆𝑔𝑎and we will 

conclude with certainty that the eigenvalue of the quantum system is 

𝑔𝑎. In addition, the subsequent evolution of this trajectory can be 
computed from 𝑓𝑔𝑎(𝑥⃗𝐴, 𝑡)𝜓𝑔𝑎(𝑥⃗𝑆) alone. In other words, we do not need 

the entire wave function ∑ 𝑐𝑔(𝑡) 𝑓𝑔(𝑔 𝑥⃗𝐴, 𝑡) 𝜓𝑔(𝑥⃗𝑆) because the particle 

velocity can be computed from 𝑓𝑔𝑎(𝑥⃗𝐴, 𝑡)𝜓𝑔𝑎(𝑥⃗𝑆). The rest … are empty 

waves that do not overlap with 𝑓𝑔𝑎(𝑥⃗𝐴, 𝑡)𝜓𝑔𝑎(𝑥⃗𝑆) so that they have no 

effect on the velocity of the Bohmian particle. This is the simple 

explanation of how the complicated orthodox collapse is 

interpreted….  

 

So far so good! If we could simply stop here, the authors would have indeed resolved 

the physical measurement problem. However, one cannot stop here and the authors 

must add an additional requirement [153, p. 98] 

 

Finally, we want to enlarge the explanation of the role played by the 

empty waves belonging to the wave packet of Equation [(4.19) in this 

text] which do not contain the particle. In principle, one can argue 

that such empty waves can evolve and, in later times, overlap with the 

original wave that contains the particle. If we are interested in doing 

subsequent (i.e., two times) quantum measurements, a good 

measuring apparatus has to avoid these spurious overlaps. This can 

be understood as an additional condition for qualifying our 

measuring apparatus as a good apparatus.  

 

This statement appears designed to enforce Bohm’s Stage 2 irreversibility. Bohm 

states in [151]: 

 

Clearly it is the irreversibility of the process of registration that 

further guarantees that this conclusion will continue to be valid in the 

future. 

 

That is, the packets that do not contain the particle will be guaranteed to remain empty 

packets as long as the process of registration is irreversible. Let us consider this 

additional condition in the context of the UMDT of Chapter 3, which was specifically 

designed to determine what a given measurement theory does and does not 

accomplish. For simplicity, we assume that the devices are 100% absorbing in the 

sense defined in Chapter 3. Suppose that the photon after interaction with Device 1 

and 2 in Step 1 are in states such that the state for which no measurement occurs does 



 

not overlap with the state for which measurement occurs. There are two cases to 

consider after Step 1. In Case 1 the Devices are bona fide measurement devices in 

which case the evolved Device 1 state and Device 2 state are in a product state. In 

Case 2 the interaction between the photon and devices is unitary in which case the 

final state of Device 1 and Device 2 are in an entangled state. Step 2 is then employed 

for which the two qubits will remain unentangled under Case 1 and in Case 2 the 

entanglement in the Devices will be transferred to the two qubits. In Step 3, a Bell 

experiment is conducted and the CHSH sum is computed. In Case 1, the CHSH will 

give a value of √2 and in Case 2 the CHSH will give a value of 2√2. The additional 

Orioles-Mompart condition would imply that a bona fide measurement has only 

occurred when there is never subsequent overlap between the cases of absorption and 

non-absorption. If the angles of the Bell experiment were chosen that were 0 degrees 

or 180 degrees such that the results could be inferred with probability unity from the 

non-overlapped decomposition after Step 1, then there would be no repercussions in 

performing the Bell experiment and Bohm’s theory will suffice to explain Steps 2 and 

3. However, the angles chosen in the Bell experiment that is required in Step 3 are 

such that the Bell measurement do indeed mix or overlap the empty waves that existed 

after Step 1. Hence in the case of Bohm’s theory with the additional Orioles-Mompart 

condition designed to enforce irreversibility, Step 3 will always be predicted to yield a 

CHSH sum of 2√2 and thus the states would still be entangled. 

Suppose that one of the other quantum measurement theories is found to be correct, 

for example the theory of spontaneous localization. And that such localization occurs 

after some amount of interaction in the first of the two-time measurements. If so, then 

the actual quantum state is a product state after the first of the two-time measurements. 

And after the particles undergo Step 2 and Step 3, the CHSH sum would be √2 . So, a 

theory that specifies physical conditions under which measurement occurs such as a 

spontaneous localization theory, if experimentally found to be correct, would falsify 

Bohm’s theory as stated by Orioles-Mompart which demands that entanglement 

continues to persist until such time as there are no further overlaps in the various 

superposition terms. Bohm’s theory is predicated on unitary evolution and it is 

possible that a non-unitary theory that makes specific predictions and meets the 

requirements R1.1-R1.3 can falsify Bohm’s theory, but only if such a theory is 

ultimately found to be correct. 

One might argue that the additional Orioles-Mompart condition can be dropped or 

is superfluous. However, Bohm in his paper considered a Stern-Gerlach experiment 

where a spin ½ particle enters an inhomogeneous magnetic field which separates the 

particle into two distinct paths that the spin up state takes versus the spin down state. 

Bohm argues that this separation cannot be considered to be a bona fide measurement 

because the two paths could be further recombined into a single path. If the separation 

into two paths was a sufficient condition for measurement, then the coherence in the 

particle would be destroyed by an inhomogeneous magnet and the recombination into 

a single path would be non-coherent. It has been demonstrated experimentally that 

such recombination does maintain coherence. Because of this and other counter-



 

examples, Bohm required the second stage of irreversibility.  

Let us examine how well the additional Orioles-Mompart condition addresses the 

physical conditions under which irreversibility occurs. Suppose an experiment were 

done that separated the electron via an inhomogeneous magnetic field and for which 

the paths were never recombined. Then one could apply the additional Orioles-

Mompart condition and conclude that such a device is a bona fide measurement 

device. In the case that the electron is separated and then recombined, the additional 

Orioles-Mompart condition implies the initial separation is not a measurement, but in 

the second case when the electron is separated and not recombined, the initial 

separation is a measurement. Hence such a condition classifies irreversibility based on 

what happens in the future.  

The additional Orioles-Mompart requirement is rather constraining and renders a 

lack of unique predictive power to explain when a particular device is a bona fide 

measurement device based on the current and past state of the device. For example, 

instead of considering the electron in an inhomogeneous magnetic field, we consider 

the interaction of a particle with a mesoscopic device. Suppose a state results that can 

be written in the form in Equation (4.19). If after the initial interaction one does not 

allow the empty waves to overlap, then Orioles-Mompart would declare the device to 

be a “good” apparatus. On the other hand, suppose that after the interaction with a 

device, further interaction is made to occur. In such a case, Orioles-Mompart would 

declare this not to be a good apparatus. Hence the ability of Bohm’s theory with the 

additional Orioles-Mompart requirement to predict whether or not an apparatus is 

good, is not based on the history of the state nor the current state of the device but 

must include the future evolution. Hence a device in one situation would be classified 

a good apparatus and in another would not be, depending on whether or not the empty 

waves further interact in the future. However, this is rather contrary to what one might 

expect based on causal theories. That is under a causal theory whether an apparatus is 

a measurement device or is not should be based on the past state and the present state; 

what will happen in the future would not be expected to have bearing on this issue. 

Bohm’s theory with the added Orioles-Mompart condition is non-unique in the 

manner that it classifies good measurement devices based on full knowledge of the 

current and past data, which is typically demanded of any physical theory. The 

additional Orioles-Mompart condition does not provide predictability to explain in the 

sense of our requirement R1.1, “What physical situations constitute the divide of 

irreversibility?” Essentially, we know that it is somewhat more complex than a single 

electron going through an inhomogeneous magnetic field and perhaps on the order of 

a macroscopic system consisting of ≈ 1023 particles. There is no precise criterion in 

Bohm’s theory that provides a prediction of the onset of irreversibility. 

Bohm’s theory may resolve the philosophers’ measurement problem as stated by 

Lewis and others, and this was indeed an early version of the arguments between 

Schrödinger and Bohr. However, Bohm’s theory does not resolve the measurement 

problem that grew out of Schrödinger’s cat paper in 1935, and was largely the major 

obstacle to Einstein’s incompleteness argument regarding the orthodox quantum 

theory (as will be further examined in Chapter 5) in the sense of his query, “Is the 



 

moon there when nobody looks?” Bohm’s theory can be considered one out of the 

many theories that makes predictions to explain precisely under what conditions 

measurement occurs. In the case of Bohm’s theory and the Chapter 3 UMDT, the 

CHSH sum is predicted to be 2√2 and entanglement is predicted to persist. However, 

such quantum states are incompatible with the existence of a particular outcome, 

which demands a product state representation. 
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