
 

Consistent Histories 

Consistent histories is a theory that provides a means of generating potential histories 

of the evolution of a closed system in a Hilbert space ℋ. The closed system may 

include not only a system that is being measured, but also the device. We will describe 

a version of consistent histories for which the initial state at time 𝑡0 is a pure state 

given by |𝜓0⟩ and evolves from time 𝑡𝐴 to time 𝑡𝐵 via the unitary operator 𝑈(𝑡𝐴, 𝑡𝐵), 
except at a set of times denoted {𝑡1, 𝑡2,⋯ , 𝑡𝑁}, for which the state undergoes 

projection, and 𝑁 is the number of projections.  

There are often more than one set of potential histories. Potential histories will be 

indexed by 𝑘 = 1,2,⋯. One can define a sample space 𝕊𝑘 that contains elements, each 

of which is a set of projections that might occur at the times {𝑡1, 𝑡2,⋯ , 𝑡𝑁}. A quantum 

sample space 𝕊𝑘 consists of a set of histories that are consistent in a manner that a 

probability can be assigned to each history such that the probabilities of each element 

or individual history, sum to unity. One can see that if the elements of 𝕊𝑘are disjoint 

or mutually exclusive and also if the union of the elements is the entire sample space, 

then one is guaranteed that the sum of the element probabilities in 𝕊𝑘 will be unity. 

Sufficient conditions under which the elements of 𝕊𝑘 are mutually exclusive will be 

found. 

Suppose the initial state is given by |𝜓0⟩ and that for time 𝑡𝑖  for histories belonging 

to 𝕊𝑘, the set of possible projections are denoted by 𝑃1(𝑘, 𝑡𝑖), 𝑃2(𝑘, 𝑡𝑖),⋯. A set of 

projectors called histories {𝑌𝛼1(k), 𝑌𝛼2(k), ⋯ } are defined at various times as 

 

𝑌𝛼𝑗(𝑘) = 𝑃0⊗𝑃𝛼1,𝑗(𝑘, 𝑡1)⊗ 𝑃𝛼2,𝑗(𝑘, 𝑡2)⊗⋯⊗𝑃𝛼𝑁,𝑗(𝑘, 𝑡𝑁) 

 

where 𝛼𝑗 = (𝛼1,𝑗 , 𝛼2,𝑗 ,⋯ , 𝛼𝑁,𝑗  ), and 𝑃0 ≡ |𝜓0⟩⟨𝜓0|. Now we can define the quantum 

sample history space 𝕊𝑘 = {𝑌𝛼1(𝑘), 𝑌𝛼2(𝑘),⋯ , 𝑌𝛼𝑁(𝑘) } as consisting of the set of 

events that form a Boolean algebra with the properties 

 

∑𝑌𝛼𝑖(𝑘) = 𝐼

𝑖

 

  𝑌𝛼𝑖(𝑘)𝑌𝛼𝑗(𝑘) = 0,   ∀𝑖 ≠ 𝑗. (4.14) 

The events are assumed [134, p. 57] to be mutually orthogonal via Equation (4.14). As 

the events are mutually orthogonal, they also commute and the events of 𝕊𝑘 are a 

Boolean algebra for which the conjunction and disjunction operations ∧ and ∨ 

respectively are well-defined.  

Events defined at times {𝑡1, 𝑡2,⋯ , 𝑡𝑁} in a given experiment should be consistent in 

the sense that a probability can be assigned to any particular history and the histories 

within 𝕊𝑘 are disjoint. This later condition is not the same as the mutual orthogonal 

condition of Equation (4.14). A chain operator 𝐾(𝑌𝛼𝑗(𝑘)) is defined as 

 

𝐾 (𝑌𝛼𝑗(𝑘)) = 𝑃𝛼𝑁,𝑗(𝑘, 𝑡𝑁)𝑈(𝑡𝑁, 𝑡𝑁−1)𝑃𝛼𝑁−1,𝑗⋯𝑃𝛼2,𝑗(𝑘, 𝑡2)𝑃𝛼1,𝑗(𝑘, 𝑡1)𝑈(𝑡1, 𝑡0)𝑃0. 



 

 

The probability that the history 𝑌𝛼𝑗(𝑘) occurs is given by 

 

𝑝(𝑌𝛼𝑗(𝑘)) = Tr [𝐾 (𝑌𝛼𝑗(𝑘))
†

𝐾 (𝑌𝛼𝑗(𝑘))] . 

 

A sufficient condition [135] [136] that a given sample space 𝕊𝑘 represents a set of 

consistent histories (that are mutually exclusive and for which the probabilities of the 

elements sum to unity) is that the different histories are mutually exclusive in the 

sense that 

 

 
Tr [𝐾 (𝑌𝛼𝑗(𝑘))

†

𝐾 (𝑌𝛼𝑙(𝑘))] = 0,   ∀ 𝑗 ≠ 𝑙. (4.15) 

Note that this condition restricts within each 𝑘 the set of histories (see the related 

Exercises 4.6-4.8 in the book or kindle version of theQMP). When the individual 

histories within a given set of consistent histories satisfy Equation (4.15) the 

probability of any two histories will be additive via 

 

𝑝 (𝑌𝛼𝑗(𝑘) ∨ 𝑌𝛼𝑙(𝑘)) = 𝑝 (𝑌𝛼𝑗(𝑘)) + 𝑝 (𝑌𝛼𝑙(𝑘)) , ∀ 𝑗 ≠ 𝑙, 

or 

𝑝 (𝑌𝛼𝑗(𝑘) ∧  𝑌𝛼𝑙(𝑘)) = 0  ∀ 𝑗 ≠ 𝑙. 

 

A history may or may not be Schrödinger unitary. For a given problem with a 

Hamiltonian H if there was only a valid consistent history that was Schrödinger 

unitary, then the measurement problem would be solved by consistent history theory. 

However, as has been raised by Dowker and Kent [137], this is not the case in light of 

the non-unique consistent history sets that can be defined when 𝑘 > 2: 
 

 See the print edition of The Quantum Measurement Problem for quotation. 

 

Griffiths considers this criticism by Dowker and Kent in [138]. He states 

 

Dowker and Kent conclude that the consistent history approach to 

quantum theory lacks predictive power, and for this reason is not 

satisfactory as a fundamental scientific theory. … it is the fact that 

the consistent history approach, as a fundamental theory, treats all 

frameworks or consistent families “democratically”, and provides no 

criterion to select out one in particular. In other words, there is no 

“law of nature” which specifies the framework. 

 

Griffiths concedes that 



 

 

… consistent histories, as a fundamental theory of nature, does not 

single out a particular framework. 

 

Griffiths gives an example of consistent histories regarding Dowker and Kent’s 

criticism which is similar to what we have already been examining in the UMDT of 

Chapter 3. That is, a photon is considered that enters a beam splitter at A at time 𝑡0 in 

Figure 3.4 and exits at time 𝑡1 in one of two output paths B and C. In each path B and 

C there is a detector. The initial joint state of the photon plus Device 1 plus Device 2 

is given by |Ψ0⟩ and the initial ready state of Device i is assumed to be a pure state and 

is denoted by |𝜓𝑟
0⟩𝑖, i=1,2, |𝜓𝑟

0⟩𝑖 ∈ ℋ𝑖  , i=1,2, 𝒟(ℋ𝑖) = 𝑁. For simplicity, it will be 

assumed that the detectors are 100% absorbing, that is the device always completely 

absorbs the photon. Suppose that in both paths there is only the vacuum state |0⟩. At 

time 𝑡1 it is assumed that the initial ready device state |𝜓𝑟
0⟩𝑖 changes to a read-out state 

that is indicative of no measurement and is denoted |𝜓0(𝑡1)⟩𝑖 , 𝑖 = 1,2, for which it 

changes to |𝜓0(𝑡2)⟩𝑖 , 𝑖 = 1,2. Consider the case that a photon with state |1𝑉⟩𝐵 is 

inserted in Path B. The state of Device 1 evolves to its readout state indicating that the 

device has detected a photon, which will be denoted |𝜓1⟩
1
∈ ℋ1. Similarly, if a photon 

with state |1𝐻⟩𝐶 is inserted solely in Path C and Device 2 is 100% absorbing, the final 

state of Device 2 is denoted as |𝜓1(𝑡2)⟩2 ∈ ℋ2.  

Consider the initial local state (|1𝑉⟩𝐴 + |1𝐻⟩𝐴)/√2 of the photon in mode A at time 𝑡0. 

This state then propagates through the beam splitter and evolves to the state 

|𝜓𝑝ℎ𝑜𝑡𝑜𝑛,𝑃𝐵𝑆⟩  = (|1𝑉⟩𝐵⊗ |0⟩
𝐶
+ |0⟩

𝐵
⊗ |1𝐻⟩𝐶)/√2 at time 𝑡1 which represents an equal 

superposition of output paths B and C. Let |𝛹0⟩  = |𝑎⟩⊗ |𝜓𝑟
0⟩
1
⊗ |𝜓𝑟

0⟩
2
. Denote the 

projection operator of an arbitrary state |𝜓⟩ by 𝒫(|𝜓⟩) ≡ |𝜓⟩⟨𝜓|. We define 

|𝜓𝑓𝑖𝑛,1⟩ consistent with previous notation as: 

 

|𝜓𝑓𝑖𝑛,1⟩  = |0⟩⊗ (|𝜓1(𝑡2)⟩1⊗ |𝜓0(𝑡2)⟩2 + |𝜓
0(𝑡2)⟩1⊗ |𝜓1(𝑡2)⟩2)/√2. 

 

Griffiths shows two sets of histories that are individually consistent. One set (denoted 

by 𝑘 = 1) can be found via the following four histories: 

 

𝑌𝛼1(1) = {𝒫(|Ψ0⟩), 𝒫 (|𝜓𝑝ℎ𝑜𝑡𝑜𝑛,𝑃𝐵𝑆⟩⊗ |𝜓1(𝑡1)⟩1⊗ |𝜓1(𝑡1)⟩2) , 𝒫(|𝜓𝑓𝑖𝑛,1⟩)} 

𝑌𝛼2(1) = {𝒫(|Ψ0⟩), 𝒫 (|𝜓𝑝ℎ𝑜𝑡𝑜𝑛,𝑃𝐵𝑆⟩⊗ |𝜓0(𝑡1)⟩1⊗ |𝜓0(𝑡1)⟩2) , 𝐼 − 𝒫(|𝜓𝑓𝑖𝑛,1⟩)} 

𝑌𝛼3(1) = {𝒫(|Ψ0⟩), 𝐼 − 𝒫 (|𝜓𝑝ℎ𝑜𝑡𝑜𝑛,𝑃𝐵𝑆⟩⊗ |𝜓0(𝑡1)⟩1⊗ |𝜓0(𝑡1)⟩2) , 𝒫 (|𝜓𝑓𝑖𝑛,1⟩)} 

𝑌𝛼4(1) = {𝒫(|Ψ0⟩), 𝐼 − 𝒫 (|𝜓𝑝ℎ𝑜𝑡𝑜𝑛,𝑃𝐵𝑆⟩⊗ |𝜓0(𝑡1)⟩1⊗ |𝜓0(𝑡1)⟩2) , 𝐼 − 𝒫(|𝜓𝑓𝑖𝑛,1⟩)}. 

However, 

 

𝑝 (𝑌𝛼2(1)) = 𝑝 (𝑌𝛼3(1)) = 𝑝 (𝑌𝛼4(1)) = 0 

http://theqmp.com/wp-content/uploads/Ch3/Ch3HT.pdf#page=2


 

 

where 𝑝(𝑌𝛼) denotes the probability of history 𝑌𝛼 occurring. Hence for 𝑘 = 1 there is 

only one non-zero probability history given by 𝑌𝛼1(1). For the set 𝑘 = 2 the following 

two sets of non-zero probability histories (along with a correspond set of zero 

probability histories) are found: 

 

𝑌𝛼1(2) = {
𝒫(|𝛹0⟩), 𝒫 (|𝜓𝑝ℎ𝑜𝑡𝑜𝑛,𝑃𝐵𝑆⟩⊗ |𝜓0(𝑡1)⟩1⊗ |𝜓0(𝑡1)⟩2) ,

𝒫(|0⟩⊗ |𝜓1(𝑡2)⟩1⊗ |𝜓0(𝑡2)⟩2)
} 

 

𝑌𝛼2(2) = {
𝒫(|𝛹0⟩), 𝒫 (|𝜓𝑝ℎ𝑜𝑡𝑜𝑛,𝑃𝐵𝑆⟩⊗ |𝜓0(𝑡1)⟩1⊗ |𝜓0(𝑡1)⟩2) ,

𝒫(|0⟩⊗ |𝜓0(𝑡2)⟩1⊗ |𝜓1(𝑡2)⟩2)
}. 

 

Note that the set of histories for 𝑘 = 2 are mutually exclusive in the sense that  

 

𝑝 (𝑌𝛼𝑗(2) ∪ 𝑌𝛼𝑙(2)) = 𝑝 (𝑌𝛼𝑗(2)) + 𝑝 (𝑌𝛼𝑙(2)) , ∀ 𝑗 ≠ 𝑙. 

 

However, it can be the case that  

 

𝑝 (𝑌𝛼𝑗(1) ∪ 𝑌𝛼𝑙(2)) ≠ 𝑝 (𝑌𝛼𝑗(1)) + 𝑝 (𝑌𝛼𝑙(2)). 

In this sense, the two sets of histories 𝑘 = 1 and 𝑘 = 2 are termed incompatible. A 

sufficient condition for the incompatibility is that the projectors at a given time do not 

commute when chosen from two different sets of histories. 

Griffiths states in [138]: 

 

There are many (in fact, an uncountably infinite number of) other 

frameworks which could have been employed to discuss the same 

situation. The fact that the same physical system can be discussed 

using many different frameworks gives rise to the problem of choice: 

how does one decide which framework is appropriate for describing 

what goes on in this closed quantum system? 

 

The discrimination of the incompatible sets of histories is required and incumbent 

upon the theory to provide. A Category 1 theory would provide such discrimination in 

terms of meeting Requirement R1.3 (or Requirement R2.2 for a Category 2 theory). In 

terms of using actual data from measurements to determine the physical history, 

Griffiths states [138]: 

 

Checking the predictions given by different incompatible frameworks 

always involves alternative experimental arrangements… In any 

case, just as there is no single “correct” choice of consistent family 

for describing the system, there is no single arrangement of 



 

apparatus which can be used to verify the predictions obtained using 

different families. 

 

We disagree with this statement. The UMDT of Chapter 3 is a single experimental 

arrangement that one can use to determine via the CHSH sum whether or not the 

history came from either the set corresponding to 𝑘 = 1 or the set corresponding to 

𝑘 = 2. 

Note that the use of multiple potential histories would not necessarily be a major 

problem if one addresses the philosopher’s measurement problem, which is an a 

posteriori problem given that a measurement has occurred in a given basis. This is 

because if one is given the measurement basis and given the measurement times, then 

one can determine the histories that are consistent with any given experiment and rule 

out incompatible histories. This would render the measurement problem an 

interpretational problem as opposed to the physical measurement problem that we 

have defined. Regarding this issue, Griffiths states [138] 

 

The endless discussions about how to interpret the state |S⟩ and 

resolve the corresponding “measurement” problem have been rightly 

criticized by Bell. 

 

Presumably, the “endless discussions” that Griffiths refers to include Einstein’s 

objections, Schrödinger’s cat paper, and the substantial body of work that concentrates 

on the issue of the lack of a product state prediction under unitary evolution. The 

physical measurement problem would appear to be irrelevant to Griffiths, as he is of 

the viewpoint that current quantum mechanics is correct FAPP. This viewpoint leads 

directly to the rejection of the physical measurement problem in favor of the 

philosophers’ definition of the measurement problem.  

On the other hand, consistent histories is a rather interesting development that does 

appear to go beyond the Copenhagen interpretation in providing sets of consistent 

histories. As noted by Dowker and Kent [137] consistent histories may be useful: 

 

The virtues of the consistent histories approach are worth 

reasserting. We have a natural mathematical criterion which is 

empirically supported and which identifies the physical content of 

quantum theory to be propositions about particular collections of 

events encoded in the consistent sets. This gives a framework in 

which attempts to set out a quantum theory of the universe, and the 

problems inherent in this idea, can be sensibly discussed…. Many 

attempts have been made to find natural mathematical structures and 

interpretational postulates that allow one to use quantum theory to 

make statements about physics that go beyond the Copenhagen 

bounds. In our view, the consistent histories formalism is one of the 

most significant developments. 

 



 

Consistent histories as developed by Griffiths does indeed narrow down the set of 

possible histories as histories via requiring Equation (4.15) to be fulfilled. Hence 

Category 1 or 2 theories that violate this rule must be excluded. Consistent histories is 

certainly a step in the right direction regarding the physical measurement problem as 

we agree that it narrows down the potential sets of histories that need to be considered, 

in the sense that a theory that resolves the measurement problem must produce a 

history that is within one of the sets of consistent histories. However, there are a large 

number of potential histories that remain after imposing Equation (4.15) and without 

any additional assumptions, consistent histories is simply silent on further narrowing 

down to a single consistent set.  
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