
 

Rosenfeld’s Solution  

A unitary methodology was presented by Rosenfeld in 1965 [117] as an exposition of 

a measurement theory by Daneri, Loiniger, and Prosperi, based on the ergodic 

theorem [118]. This method uses a large number of device states and Rosenfeld 

believed that in the limit of large numbers of particles his method would be sufficient 

to explain measurement. Rosenfeld considers an atomic system initialized to state 

|𝜑0⟩  =  ∑ 𝑐𝑟|𝜑𝑟⟩𝑟  and a device initialized to state |Ψ0⟩. Two devices are consequently 

used to measure two different observables A, B with eigenstates given by |𝜑𝑟⟩ and |𝜒𝑠⟩ 
respectively. There is a short time 𝜏 when the device interacts with the system, such 

that if the initial state of the system is |𝜑𝑟⟩ the final state of system-device is 

𝛼𝑟|𝜑𝑟⟩⨂|Ψ𝑟⟩ , whereby the device is in the pointer state |Ψ𝑟⟩ that occurs unitarily 

when the system input is in state |𝜑𝑟⟩. The approximation 𝛼𝑟 ≈ 1 is made as the 

interaction is assumed to be sufficiently short. After time 𝜏, the atomic system and 

device are assumed non-interacting and evolve via the tensor product unitary 

𝑈𝑆(𝑡)⨂𝑈𝐷(𝑡). The Schrödinger predicted unitary evolution when the device is set to 

measure observable A is given by 

 

∑ 𝑐𝑟𝑟 |𝜑𝑟⟩ ⊗ |Ψ𝑟⟩. 
 

After a time 𝑡 the system-device evolves to 

  

 ∑ 𝑐𝑟
𝑟
𝑈𝑆(𝑡)|𝜑𝑟⟩ ⊗ 𝑈𝐷(𝑡)|Ψ𝑟⟩. (4.4) 

The system is then followed by a measurement of Observable B via interaction with a 

second measurement device, initialized to |Ψ0⟩, that evolves to |𝜒𝑠⟩⨂|Ψ𝑟⟩ when the 

system input is in state |𝜒𝑠⟩. The probability of finding the quantum state |𝜒𝑠⟩ is on 

average given by use of the Born and/or von Neumann measurement postulate 

 

 ∑ |𝑐𝑟|
2⟨𝜒𝑠|𝑈𝑆(𝑡)𝜑𝑟⟩

2

𝑟
. (4.5) 

 

Rosenfeld states that since this expression only depends on the relative probabilities 

|𝑐𝑟|
2 of the eigenstates |𝜑𝑟⟩, but not on the phases of the complex coefficients 𝑐𝑟, this 

is referred to as the “reduction” of the state |𝜑0⟩. That is, if no measurement of A had 

been performed, the probability of finding |𝜒𝑠⟩ is given by 

 

 |∑ 𝑐𝑟
𝑟
⟨𝜒𝑠|𝑈𝑆(𝑡)𝜑𝑟⟩|

2 (4.6) 

which differs from Equation (4.5) by the cross terms: 

 

   ∑ 𝑐𝑟
𝑟≠𝑟′

𝑐𝑟′
∗ ⟨𝜒𝑠|𝑈𝑆(𝑡)𝜑𝑟⟩⟨𝜒𝑠|𝑈𝑆(𝑡)𝜑𝑟′⟩

∗. (4.7) 



 

Rosenfeld claims that the effect of Measurement A is the disappearance of the terms in 

Equation (4.7) and that is formally denoted as the “reduction” of the initial state.  

Rosenfeld desires to impose an ergodicity condition on the measurement device for 

which Equation (4.7) is claimed to go to zero when the device is macroscopic. In this 

case, if Measurement A is followed by Measurement B, the probability of finding |𝜒𝑠⟩ 
will correspond correctly to Equation (4.5). The argument Rosenfeld presents is given 

in the Appendix. 

External orthogonalization will also be useful in discerning many approaches that 

have been proposed to resolve the measurement problem. 

External Orthogonalization and Rosenfeld 

Rather than use the method of ergodicity that is statistical and outside of a rigorous 

Hamiltonian formulation that has been the focus of this book, it will be shown that 

external orthogonalization is a unitary solution within the Hamiltonian formulation, 

that can also be used to derive Equation (4.5). 

Consider the use of two unitary devices denoted X and Y that are used to 

implement external orthogonalization in order to determine if such devices result in 

the outcome that Rosenfeld desires under measurement, Equation (4.5). In the first 

measurement X of Rosenfeld, let us set the eigenstates of the system required by 

external orthogonalization equal to the eigenstates of Observable A in Rosenfeld’s 

proposal, i.e., |𝜙𝑟⟩|𝜑𝑟⟩ and whereby the corresponding unitary evolution is denoted 

𝑈𝑆,𝑋(𝑡). The second measurement is specified by using external orthogonalization 

with |𝜙𝑟⟩  = |𝜒𝑟⟩, the eigenstates of Observable B, and the corresponding unitary 

evolution is denoted 𝑈𝑆,𝑌(𝑡). In both cases the external particles are initialized to |𝛹0⟩. 

Given the initial state |𝜓𝑆⟩  = ∑ 𝑐𝑟|𝜙𝑟⟩𝑟 , the resulting state of external 

orthogonalization after unitary evolution is  

 

|𝜓𝑆,𝑋
(1)⟩  ≡ 𝑈𝑆,𝑋(𝜋/2)(|𝜓𝑆⟩⨂|𝛹0⟩) 

|𝜓𝑆,𝑋
(1)
⟩  =∑ 𝑐𝑟|𝜑𝑟⟩ ⊗ |𝛹𝑟⟩.

𝑟
 

Rosenfeld then proposes that the system and Device X are separated or non-interacting 

and the system is allowed to unitarily evolve via its self-Hamiltonian. In this case, 

consider the partial density matrix of the system. The system is in a mixed state, 𝜌𝑆
(1)
≡

Tr𝑋| 𝜓𝑆,𝑋
(1)
⟩ ⟨𝜓𝑆,𝑋

(1)
| which can be computed as the diagonal matrix 

 

𝜌𝑆
(1)
= (

|𝑐1|
2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ |𝑐𝑁|

2
) 

 
where N is the number of eigenvectors of Observable A. After the system and Device 

X are separated, the system is evolved unitarily for a time 𝑡 = 𝑡𝑈. Denoting 
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𝑈𝑆(𝑡) = 𝑒
−
𝑖𝐻𝑆𝑡
2  

 

the resulting state of the system becomes 𝜌𝑆
(2)
≡ 𝑈𝑆(𝑡𝑈)𝜌𝑆

(1)
𝑈𝑆(𝑡𝑈)

†. This will leave the 

density matrix unchanged i.e., 𝜌𝑆
(2)
= 𝜌𝑆

(1)
 as 𝜌𝑆

(1)
 is diagonal in the self-Hamiltonian 𝐻𝐴. 

The third and final step is to interact the system (specified by density matrix 𝜌𝑆
(2)

) with 

Device Y initialized to the density matrix 𝜌𝐷,0 ≡ |𝛹0⟩⟨𝛹0|. The density matrix of 

System-Device Y is then given by 

 

𝜌𝑆,𝑌
(3)
≡ 𝑈𝑆,𝑌(𝜋/2)(𝜌𝑆

(2)⨂ 𝜌𝐷,0)𝑈𝑆,𝑌(𝜋/2)
† . 

 

The system after interacting with Device Y is given by 𝜌𝑆
(2)
≡ Tr𝑌|𝜓𝑆,𝑌

(1)
⟩⟨𝜓𝑆,𝑌

(1)
|, which 

can be computed as 

 

𝜌𝑆
(2)
=

(

 
 
∑ |𝑐𝑟|

2⟨𝜒1|𝜑1⟩
2

𝑟
⋯ 0

⋮ ⋱ ⋮

0 ⋯ ∑ |𝑐𝑟|
2⟨𝜒𝑁|𝜑𝑁⟩

2

𝑟 )

 
 
, 

 

and is in agreement with Rosenfeld’s Equation (4.5). Hence it has been shown that 

unitary evolution via external orthogonalization in the manner that Rosenfeld 

considered, is fully consistent with Born’s rule and von Neumann’s measurement 

postulate insofar as results on the system are measured.  

External Orthogonalization and UMDT 

If the measurement problem could be resolved by developing a unitary approach that 

results in Rosenfeld’s Equation (4.5), then external orthogonalization would indeed be 

a satisfactory resolution to the measurement problem. If this were the case, then 

external orthogonalization should also be able to satisfactorily resolve the dilemma for 

which the Chapter 3 UMDT was specifically developed to address. Let us then 

examine how well Rosenfeld’s criterion and external orthogonalization fare in 

comparison with the UMDT. 

Suppose that the external orthogonalization Hamiltonian of Equation (4.1) is 

utilized in the Chapter 3 development for the detectors shown in Figure 3.4. Consider 

the case for which both devices are identical and are two-level systems in which |𝛹0⟩ 
that will change its state to |𝛹1⟩ upon absorbing a photon. Setting |𝜙0⟩  = |0⟩ and 

|𝜙1⟩  = |1⟩, a Hamiltonian applicable to Figure 3.4  is given by: 

 

𝐻 = 𝐻𝐹 ⊗ 𝐼 ⊗ 𝐼 + 𝐼 ⊗𝐻1⊗ 𝐼 + 𝐼 ⊗ 𝐼 ⊗𝐻2 +𝐻𝑖𝑛𝑡 

𝐻𝐹 = 𝑤𝑎𝐵
†𝑎𝐵⊗ 𝐼2 +𝑤𝐼2⊗𝑎𝐶

†𝑎𝐶 , 

𝐻𝑖 = |0⟩⟨0| + 2|1⟩⟨1| 

𝐻𝐹,1 = 𝑎𝐵⊗ 𝐼2⊗𝜎+⊗ 𝐼2 + 𝑎𝐵
†⊗ 𝐼2⊗𝜎−⊗ 𝐼2 

http://theqmp.com/wp-content/uploads/Ch4/Ch4EO.pdf#page=1
http://theqmp.com/wp-content/uploads/Ch3/Ch3HT.pdf#page=2
http://theqmp.com/wp-content/uploads/Ch3/Ch3HT.pdf#page=2


 

𝐻𝐹,2 = 𝐼2⊗𝑎𝐶⊗ 𝐼2⊗𝜎+ + 𝐼2⊗𝑎𝐶
†⊗ 𝐼2⊗𝜎− 

     𝐻𝑖𝑛𝑡 = 𝐻𝐹,1 +𝐻𝐹,2. 

In this model, the atomic system that is considered to be measured in Rosenfeld’s 

paper has been replaced by a photon in order to consider its application using the 

Chapter 3 development. Both 𝐻1 and 𝐻2 are device Hamiltonians that are each a two-

level system. The field is described by a harmonic oscillator of mode energy 𝑤 = 1, 

and the interaction is such that when a single photon is annihilated the device 

resonantly undergoes a raising operation and when the device falls from state |1⟩ to |0⟩ 
a resonant photon is added to the mode. The application of this particular external 

orthogonalization Hamiltonian can be seen to be a 100% absorbing model for 

interaction times 𝜋/2 (and modulus 2 𝜋). 

The initial state of the device i, denoted |𝜓𝑟
0⟩𝑖 , unitarily evolves to a read-out state 

that is indicative of no measurement and, adopting the notation in Chapter 3, is 

denoted |𝜓0⟩𝑖 , 𝑖 = 1, 2. Consider the case that a photon with state |1𝑉⟩𝐵 is inserted in 

Path B. After time 𝜋/2, the state of Device 1 evolves to its read-out state indicating 

that the Device has detected a photon, denoted |𝜓1⟩1. Similarly, if a photon with state 

|1𝐻⟩𝐶 is inserted solely in Path C, the final state of Device 2 after time 𝜋/2 is denoted 

as |𝜓1⟩2.  
In the case of Rosenfeld whereby a single device is used in order to detect the 

system, the initial system state was assumed to be a pure state given by |𝜓𝑆⟩  =
∑ 𝑐𝑟𝑟 |𝜑𝑟⟩. However, in the Chapter 3 development there are now two detectors that 

interact with the electromagnetic field in separate locations. However, for the case 

needed to be considered in Figure 3.4, the initial photon state given by  

 

|𝜓𝑝ℎ𝑜𝑡𝑜𝑛,𝑃𝐵𝑆⟩  = √𝑎|1𝑉⟩𝐵⊗ |0⟩𝐶 + √1 − 𝑎 |0⟩𝐵⊗ |1𝐻⟩𝐶 

 

results in a mixed photon state for both photon Mode B as well as photon Mode C. In 

the case of Figure 3.4  there are two detectors after the initial Step 1 unitary evolution 

and the partial density matrices of the devices are found by Equation (3.32) for which 

𝜌
1′
(1)
= 𝑎𝜌

1,1′
(1)
+ (1 − 𝑎)𝜌

2,1′
(1)  and 𝜌

1,1′
(1)

 is the Schrödinger evolved density matrix of the device 

assuming a photon impinges on the device and 𝜌2,1′
(1)

 is the Schrödinger evolved density 

matrix of the device with no photon impinging on the device. Assuming for simplicity 

that the initial states of the devices are pure states, then 𝜌
1,1′
(1)  and 𝜌

2,1′
(1)  are pure 

orthogonal states. With this, if one considers 𝜌
1′
(1) transformed via change of basis using 

the final orthogonal states 𝜌
1,1′
(1)  and 𝜌

2,1′
(1) , the result is 

  

 (
𝑎 0
0 1 − 𝑎

)  (4.8) 

and 𝜌
2′
(1) can similarly be expressed in the basis of the final orthogonal states 𝜌

1,2′
(1)  and 

𝜌
2,2′
(1)  resulting in  
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 (
1 − 𝑎 0
0 𝑎

). (4.9) 

Hence the devices after Step 1 are in a mixed state for which the diagonal elements 

correspond exactly to what is required in the measurement postulate and Born’s law. If 

the solution to the measurement problem only required that one show how one could 

derive the probabilities of measurement via unitary evolution, then Step 1 would 

suffice and the measurement problem would be solved by Step 1. However, as we 

have defined the measurement problem, the problem is related to the unitary 

prediction of entanglement versus a product state of the device which is expected 

under measurement. This is brought out in the UMDT operations that distinguish 

unitary evolution from measurement, and there remain Steps 2 and 3. If one applies 

Step 2 and Step 3 to the two devices, the result is shown in Figure 3.16. Although the 

partial density matrix of the devices after Step 1 by themselves are in states that might 

appear to resolve the measurement problem as understood by Rosenfeld and many 

others, one sees in Figure 3.16 that the devices when acting unitarily have the Bell 

measurement result that is always greater than the result when measurement occurs for 

any non-zero superposition parameter 𝑎. 

Let us now ask how well external orthogonalization solves the measurement 

problem by examining the requirements that we have set forward for a scientifically 

acceptable solution. It has been demonstrated using the UMDT of Chapter 3, that 

reproducing Rosenfeld’s Equation (4.5) is not sufficient to resolve the measurement 

problem. The measurement problem is related to the prediction of entanglement versus 

the product state that is demanded in any theoretical treatment. That Schrödinger’s 

equation predicts entanglement was pointed out quite early in 1935 by Schrödinger 

himself [119]. 

In order to show that the measurement problem can be solved unitarily, one would 

need to develop a unitary methodology that gives the Born predictions of 

measurement and for which the device plus system are in a tensor product state versus 

an entangled state. The fact that the partial density matrices of the devices are in 

completely mixed states, when the overall state of the devices is a pure state, can be 

shown to result in an entangled state (see Exercise 4.4 in the book or kindle version of 

theQMP). Hence the idea that a unitary operation can resolve the measurement 

problem by diagonalizing the density matrix of the devices in a manner related to 

Born’s law, such that it removes first order coherence, is not correct. On the contrary, 

the fact that the partial density matrices are mixed and non-coherent when the overall 

joint matrix of the two density matrices is pure, only points to the transfer of the first 

order photon coherence that originally existed between the two paths into second order 

coherence of entanglement between the two qubits via the UMDT in Step 1 and 2. 

Such entangled states are contrary to the states that result during measurement, which 

are well-defined product states. The unitary prediction of entanglement is contrary to 

the notion of a single well-defined system-device state that occurs under the 

measurement process.  

Has Rosenfeld addressed Requirement R1.1? There are not explicit conditions that 

have been specified for a measurement to occur. Rosenfeld has not addressed R1.1 as 

http://theqmp.com/wp-content/uploads/Ch3/Ch3SOSDPM.pdf#page=4
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he contends that measurement is a consequence of Schrödinger unitary evolution. And 

if the measurement problem could be resolved by showing that Equation (4.5) 

converges to Equation (4.6), then indeed Rosenfeld could have resolved the 

measurement problem.  
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