
 

Master Equations for Nondeterministic Evolution 

Master equation approaches have been developed that provide an equation for the 

density matrix of a reduced system that interacts with a larger system such as the 

environment [258]. In 1976 both Gorini, Kossakowski, and Sudarshan (GKS) for the 

case of discrete systems [249] and Lindblad [250] for the case of continuous systems, 

developed the most general Markovian master equation that is trace-reserving and 

completely positive. The Lindblad form for the reduced system dynamics has been 

shown to be equivalent to tracing out the unitary interaction of a system with a 

Markovian environment. For example, it has been shown in [157] using the Jaynes-

Cummings model as the interaction between a system and oscillator bath, that a 

Lindblad form results for the evolution of the density matrix 𝜌 of the system. A 

general Lindblad form for the evolution of a reduced density matrix is given as 

 

 𝑑𝜌

𝑑𝑡
= −

𝑖

ℏ
[𝐻, 𝜌] +∑(𝐿𝑖𝜌𝐿𝑖

† −
1

2
𝐿𝑖
†𝐿𝑖𝜌 −

1

2
𝜌𝐿𝑖

†𝐿𝑖)

𝑖

 (4.34) 
 

where 𝐿𝑖 are operators that represent the interaction of the system and environment.  

When starting in a pure state, the density matrix can evolve deterministically to a 

mixed state in a master equation. Although master equations such as the Lindblad 

form are deterministic equations in the evolution of the density matrix, one might 

nevertheless consider the use of stochastic (nondeterministic) differential equations to 

model the individual stochastic outcomes such that, on average, the stochastic states 

average exactly to the deterministic mixed state predicted in a master equation. In 

such a case when the individual trials are stochastic, the average system evolution may 

be described by a nondeterministic master equation. 

Gisin and Percival in [259] have shown that the stochastic differential equation 
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has the mean density matrix given by 

 

𝜌 = |�̂�𝑡⟩⟨�̂�𝑡|
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

 

where 𝜌 satisfies the Lindblad form of Equation (4.34). This shows that one can 

effectively compute or simulate the Lindblad reduced density matrix of a system that 

interacts unitarily with an environment via the use of stochastic differential equations. 

One can also derive a Lindblad form for energy-driven reduction models [255]. 

Furthermore, note that the equation of the density matrix 𝜌 in Equation (4.34) is 

linear in 𝜌. Hence the general evolution of such equations is non-linear in the wave 



 

function and linear in the density operator. We will see later in Chapter 7 that such 

nondeterministic evolution is within a class of time-evolution that does not suffer from 

problems of signaling.  

The fact that stochastic equations of the form of Equation (4.35) have the property 

of quantum state convergence to one of the operator’s range space in agreement with 

von Neumann theory, and furthermore that the evolution is non-linear in the wave 

function yet linear in the density operator, gives impetus to consider the possibility 

that stochastic equations of the form of Equation (4.35) govern the theory of 

measurement. This possibility will be further examined in Chapter 7. One might also 

consider as well that the ensemble average in terms of a density matrix corresponds 

exactly to the Lindblad equation. However, this has positive and negative 

consequences: it is positive as it appears to correspond to real-world effects in open-

system theory. It is negative in the sense, as has been already discussed previously, 

that such master equations also follow from a unitary deterministic theory that does 

not resolve the measurement problem as a Category 1 theory. Hence to experimentally 

distinguish such a Category 1 theory from a purely unitary theory would require 

isolating or minimizing a system due to decoherence to rule out the possibility that a 

non-unitary effect is actually a unitary effect in a higher Hilbert space.  
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