
 

Stochastic Differential Equations 

GRW theory as originally proposed has discrete time jumps, for which the wave 

function evolution is discontinuous. Pearle in 1973 suggested the use of stochastic 

differential equations to account for the reduction process [244]. With the use of a 

stochastic differential equation, changes do not occur discontinuously in a single 

jump, but can be made to change in a continuous manner. The heuristic idea of 

stochastic differential equations is to increase the rate of occurrence of the jumps 

while simultaneously decreasing the effect that the stochastic process has on the 

change on the state for any given occurrence. For example, in the case of GRW one 

might consider increasing the Poisson parameter 𝜆ℎ so that in the limit, events are 

expected to occur continuously, while simultaneously decreasing the effect of any 

given hit. In this manner, a stochastic process can arise that is expected to be 

continuous in the manner that the state-vector changes, but still leads to the stochastic 

changes that are in agreement with the Born rule.  

Stochastic differential equations often utilize continuous Brownian motion in their 

description. A stochastic process {𝐵𝑡, 𝑡 > 0} is called a real Brownian motion if the 

following hold [245]: 

 

1. The initial value 𝐵0 is a real value (for a real Brownian motion process).  

2. The process has independent increments, i.e. for all times 0 ≤ 𝑡1 ≤ ⋯ ≤ 𝑡𝑁 

the increments 𝐵𝑡𝑁 − 𝐵𝑡𝑁−1,𝐵𝑡𝑁−1 − 𝐵𝑡𝑁−2,⋯ ,𝐵𝑡2 − 𝐵𝑡1 are independent 

random variables 

3. For all t the increments 𝐵𝑡+𝜎2 −𝐵𝑡 are normally distributed random variables 

𝑁(0, 𝜎), i.e. with mean 0 and standard deviation 𝜎. 

4. Almost surely, the function 𝑡 → 𝐵𝑡 is continuous. 

A standard Brownian motion {𝐵𝑡, 𝑡 > 0} has initial value 𝐵0 = 0. Brownian motion 

can be extended to a vector form of 𝑁 dimensions. By considering a two-dimensional 

real Brownian process, a standard complex Brownian motion can be defined in which 

both real and imaginary components are normally distributed. We will use the 

convention in [246] for which a complex motion is defined as  

 

𝐵𝑡 =
1

√2
(𝐵𝑡

(1) + 𝑖𝐵𝑡
(2)
) 

 

where 𝐵𝑡
(1,𝑅), 𝐵𝑡

(2,𝑅)
 are independent real standard Brownian motions. This definition 

has the advantage that 𝐵𝑡 continues to have variance parameter 𝜎2. The Itô rule for 

this case is [247] 𝑑B𝑡
′𝑑𝐵𝑡 = 𝑑𝑡, 𝑑𝐵𝑡𝑑𝐵𝑡 = 0. 

The development of stochastic differential equations was mathematically 

formalized by Itô and in a different form by Stratonovich. These two forms are based 

on different definitions and the use of one form over another has various advantages 

depending on the situation [185]. The theory of stochastic differential equations 

developed by Itô was extended in the seminar paper by Hudson and Parthasarathy 



 

[248], which also relates to the work of [249] and [250]. 

We utilize the Itô form which can be written as an equation that has an added 

stochastic term of the form: 

 

 𝑑𝑥𝑡 = 𝜇(𝑥𝑡, 𝑡)𝑑𝑡 + 𝜎(𝑥𝑡, 𝑡)𝑑𝐵𝑡, (4.25) 

where 𝐵𝑡 is a complex Brownian stochastic process.  

Denoting the change in 𝑥𝑡 as Δ𝑥 over a small interval of time Δ𝑡, it is seen that the 

distribution of Δ𝑥 is given a normally distributed random variable with mean 𝜇(𝑥, 𝑡)𝛥𝑡 
and variance 𝜎(𝑥, 𝑡)2𝛥𝑡. Moreover, as Δ𝑥 can be written independently of the 𝑥, one 

sees that the process is a Markov process. The term 𝜇(𝑥𝑡, 𝑡) is referred to as the drift 

coefficient and 𝜎(𝑥𝑡, 𝑡) as the diffusion coefficient. While 𝐵𝑡 is a complex Brownian 

motion process, the stochastic process 𝑥𝑡 is often referred to as a diffusion process. 

In order to apply the Itô form to the evolution of a wave function |𝜓𝑡⟩ consider 

associating |𝜓𝑡⟩ with 𝑥 above and restricting initially the evolution to the linear 

stochastic differential equation 

 𝑑|𝜓𝑡⟩  = 𝐶|𝜓𝑡⟩𝑑𝑡 + 𝐴|𝜓𝑡⟩𝑑𝐵𝑡  (4.26) 

where 𝐶 , 𝐴 are linear operators on |𝜓𝑡⟩. This form can be extended to a summation 

over multiple 𝐴𝑖, but for now we assume a single 𝐴𝑖. It is shown in [244] that unless 

further restrictions are put in place, |𝜓𝑡⟩ will generally have a norm that changes in 

time. It is found that the norm can be written as: 

 
⟨𝜓𝑡|𝜓𝑡⟩  =  ⟨𝜓0|𝜓0⟩ + ∫ ⟨𝜓𝑠|(

𝑡

0

𝐶 + 𝐶† + 𝐴†𝐴)𝜓𝑠⟩𝑑𝑠 +  

∫ ⟨𝜓𝑠|(
𝑡

0

𝐴 + 𝐴†)𝜓𝑠⟩𝑑𝐵𝑠. 

(4.27) 

If one further restricts the above so that the second term is zero via 

 

𝐶 + 𝐶† = −𝐴†𝐴 

 

then ⟨𝜓𝑡|𝜓𝑡⟩  =  ⟨𝜓0|𝜓0⟩ + ∫ ⟨𝜓𝑠|(
𝑡

0
𝐴 + 𝐴†)𝜓𝑠⟩𝑑𝐵𝑠. Now if we set the anti-Hermitian 

part of C to −
𝑖

ℏ
𝐻, Equation (4.26) becomes 

 

 
𝑑|𝜓𝑡⟩ = −

𝑖

ℏ
𝐻|𝜓𝑡⟩𝑑𝑡 −

1

2
𝐴†𝐴|𝜓𝑡⟩𝑑𝑡 + 𝐴|𝜓𝑡⟩𝑑𝐵𝑡 . (4.28) 

The above equation is a linear equation in the states |𝜓𝑡⟩. In order to further restrict 

|𝜓𝑡⟩ so that it has constant unity norm, non-linear terms are introduced. Let 

 

 |�̂�𝑡⟩ =
|𝜓𝑡⟩

|||𝜓𝑡⟩||
. 

 



 

It is shown in [244] that this restriction results in the Itô equation 

 

  𝑑|�̂�𝑡⟩  = −
𝑖

ℏ
𝐻|�̂�𝑡⟩𝑑𝑡 + (−

1

2
(𝐴† − 𝑅)|�̂�𝑡⟩ +

1

2
(𝐴 −

𝑅)𝑅|�̂�𝑡⟩)𝑑𝑡 + (𝐴 − 𝑅)𝑑𝐵𝑡|�̂�𝑡⟩  
(4.29) 

where 𝑅  ≡
1

2
⟨�̂�𝑡|𝐴 + 𝐴

†|�̂�𝑡⟩. Note that once the restriction is made to the normalized 

form |�̂�𝑡⟩, the resulting Equation (4.29) is now nonlinear in the states |�̂�𝑡⟩. Assuming 

self-adjoint operators 𝐴 = 𝐴† the above can be written as 

 

 
𝑑|�̂�𝑡⟩ = −

𝑖

ℏ
𝐻|�̂�𝑡⟩𝑑𝑡 −

1

2
(𝐴 − �̅�)2|�̂�𝑡⟩𝑑𝑡 + 

(𝐴 − �̅�)𝑑𝐵𝑡|�̂�𝑡⟩ 
(4.30) 

where �̅� ≡ ⟨�̂�𝑡|𝐴|�̂�𝑡⟩. This can be rewritten in the form 

 

 
𝑑|�̂�𝑡⟩ = −

𝑖

ℏ
𝐻|�̂�𝑡⟩𝑑𝑡 + (�̅�𝐴 −

1

2
𝐴2 −

1

2
�̅�2) |�̂�𝑡⟩𝑑𝑡 + 

(𝐴 − �̅�)𝑑𝐵𝑡|�̂�𝑡⟩. 
(4.31) 

This can be further extended to a summation over multiple 𝐴𝑖 which results in 

 

 
𝑑|�̂�𝑡⟩  =  −

𝑖

ℏ
𝐻|�̂�𝑡⟩𝑑𝑡 +∑(�̅�𝑖𝐴𝑖 −

1

2
𝐴𝑖
2 −

1

2
�̅�𝑖
2) |�̂�𝑡⟩𝑑𝑡

𝑖

+ 

∑ (𝐴𝑖 − �̅�𝑖)𝑑𝐵𝑡|�̂�𝑡⟩𝑖  . 

 

(4.32) 

State Reduction  

A result established by Gisin in [251] is that for a single adjoint operator 𝐴, the 

evolution of |�̂�𝑡⟩ converges (in the sense that the mean square deviation approaches 

zero) asymptotically to an eigenstate of 𝐴. In [226] conditions were found for the case 

of multiple operators 𝐴𝑖 that the evolution of |�̂�𝑡⟩ moves into subspaces that are 

associated with the operators 𝐴𝑖 in the stochastic differential equations. A similar 

result was established in [252] showing that the dispersion entropy, which is a 

measure of localization of |�̂�𝑡⟩ to one of several subspaces, generally decreases in time 

in a manner for which |�̂�𝑡⟩ converges to evolve into one of the subspaces.  

A condition on the subspaces that appears to be met in both papers is described. 

Let us assume that the operators 𝐴𝑖 in Equation (4.32) are Hermitian, and for 

simplicity assume that 𝐴𝑖 can be represented by orthogonal projection operators 𝑃𝑖 

(𝑃𝑖
2 = 𝑃𝑖 , not necessarily rank 1, 𝑃𝑖 𝑃𝑗 = 0 for all 𝑖 ≠ 𝑗). Let ℜ(𝑃) denote the range 

space of an operator 𝑃. Note that if 𝑥 ∈ ℜ(𝑃), 𝑃𝑖𝑥 = 𝑥, and 𝑃𝑖 is the identity map for 

all 𝑥 ∈ ℜ(𝑃).  
An initial state |�̂�𝑡⟩ is found to evolve to ℜ(𝑃𝑖) for some 𝑃𝑖. However, the 



 

particular outcome i occurs stochastically. That is, under any given trial for which the 

stochastic differential equation is evaluated for all time, the evolution will converge 

into ℜ(𝑃𝑖) for some particular 𝑃𝑖. This shows that such stochastic differential 

equations with Brownian motion converge to a single subspace, which is a prediction 

of standard von Neumann measurement theory. Asymptotic spectral stability has been 

proven in [253]. 

Furthermore, the probability of the state asymptotically belonging to one of the 

subspaces, i.e., |�̂�𝑡⟩ ∈ ℜ(𝑃𝑖), 𝑡 → ∞, is given by ⟨�̂�0|𝑃𝑖|�̂�0⟩. Hence the stochastic 

differential equations with Brownian motion reproduce the quantum prediction of 

Born’s rule which is also a prediction of standard von Neumann measurement theory. 

Quantum diffusion equations developed by Gisin and Percival were shown to be 

related to the work of Hudson and Parthasarathy in [254].  

Although stochastic differential equations generally converge into eigenstates of 

observables, such equations often do not conserve energy or momentum. If the 

conditional expected value of the random variable representing the dynamic energy 

𝐻𝑡 ≡ Tr(𝜌(𝑡)𝐻) has the martingale property E(𝐻𝑡|{𝐻𝜏: 𝜏 ≤ 𝑠}) = 𝐻𝑠 for 𝑠 ≤ 𝑡 then 

energy will be conserved on average. Consider setting 𝐴 = 𝐻 in Equation (4.30) 

 
𝑑|�̂�𝑡⟩  = −

𝑖

ℏ
𝐻𝑑|�̂�𝑡⟩ 𝑑𝑡 −

1

2
(𝐻 − �̅�)2|�̂�𝑡⟩𝑑𝑡

+ (𝐻 − �̅�)𝑑𝐵𝑡|�̂�𝑡⟩. 
(4.33) 

Equation (4.33) has the desired martingale property, and stochastic equations of this 

form are defined in [255] [256] as energy-driven stochastic reduction models. As such, 

one might consider such a model for a closed system collapse reduction model. 

However, on-average conservation is not the same as strict energy conservation on 

every trial and, as will be further discussed in Chapter 5, was at the heart of the Bohr-

Kramers-Slater debate. Additionally, it has been argued by [257] that energy-driven 

models cannot lead to spatially localized states in commonly occurring cases. Whether 

or not energy is strictly conserved or conserved on-average is an important question 

that will be further discussed in Chapters 5, 7, and 8.  
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