
 

 

Bohr’s Correspondence Principle 

Bohr's theory was deliberately incomplete so that he could find principles that would 

allow a systematic search for a “rational generalization” of classical electrodynamics. 

A major conceptual tool that characterized Bohr’s atomic work was the 

correspondence principle, his celebrated asymptotic consistency requirement between 

quantum theory and classical physics, that took various forms over the years and was 

often misunderstood by even his closest collaborators [312, p. 114], but guided his 

research and dominated quantum theory until the emergence of quantum mechanics in 

1925-26 [419, p. 81]. It should be emphasized that the correspondence principle is not 

the elementary recognition that the results of classical and quantum physics converge 

in the limit ℎ → 0. Bohr said emphatically that this [420] 

 See the print edition of The Quantum Measurement Problem for quotation. 
 

Instead, the correspondence principle is deeper and aims at the heart of the differences 

between quantum and classical physics. Even more than the previous fundamental 

work of Planck and Einstein on the quantum, Bohr’s atomic work marked a decisive 

break with classical physics. This was primarily because from the second postulate of 

Bohr’s theory there can be no relation between the light frequency (or color of the 

light) and the period of the electron, and thus the theory differed in principle from the 

classical picture. This disturbed many physicists at the time since experiments had 

confirmed the classical relation between the period of the waves and the electric 

currents. However, Bohr was able to show that if one considers increasingly larger 

orbits characterized by quantum number n, two neighboring orbits will have periods 

that approach a common value. And from the frequency of the light that is emitted in a 

jump between two such orbits according to Bohr’s quantum postulate, one finds that i t 

approaches the frequency of classical theory with this period. Therefore, even though 

the physics of the emission of light in quantum theory is quite different from that in 

the classical theory, the results approached approximate classicality with increasing n. 

Bohr’s theory in a precise way contained within itself the results of classical theory 

and is a generalization of classicality in the sense of this correspondence principle.  

Bohr first applied the correspondence arguments when he argued that as energy 

intervals ∆𝐸 = ℎ∆𝜈 between stationary states become arbitrarily small the emitted 

frequencies would coincide with the frequencies expected from classical theory and he 

used this correspondence in 1913 to derive the energy levels of the hydrogen atom and 

subsequently in his analysis of the Stark effect. It could also function as a selection 

principle, as Bohr explained [421]: 

Among the processes that are conceivable and that according to the 

quantum theory might occur in the atom we shall reject those whose 

occurrence cannot be regarded as consistent with a correspondence 

of the required nature. 
Niels Bohr, The Theory of Spectra and Atomic Constitution, Three Essays, Cambridge University Press, 1924. 

Bohr’s most careful statement of the correspondence principle appeared in a 1921 



 

 

paper [422]. However, Bohr insisted that the correspondence principle was quantum 

mechanical and that its physical meaning did not depend directly on the validity of 

classical mechanics for the motion of an atomic system in stationary states. Bohr’s 

statements following Heisenberg’s development in 1925 of matrix mechanics, the first 

consistent theory of quantum mechanics, including his later complementarity 

interpretation of the wave-particle duality, continued to be influenced by the 

correspondence between the quantum and classical regimes. In Bohr’s famous Como 

lecture of 1927 in which he first introduced the concept of complementarity, he talked 

of [310] 

 

a far-reaching correspondence between the consequence of the 

classical theory and those of the quantum theory. 
Reprinted by permission from Macmillan Publishers Ltd; Nature 121, 580, copyright (1928). 

https://doi.org/10.1038/121580a0 

 

The correspondence principle influenced his interpretation of quantum mechanics and 

was a key element for his formulation of complementarity. Bohr felt that the principle 

had been fully incorporated into Heisenberg’s matrix mechanics in that [198] 

 

the whole apparatus of the quantum mechanics can be regarded as a 

precise formulation of the tendencies embodied in the 

correspondence principle. 
Reprinted by permission from Macmillan Publisher Ltd; Nature 116, 845, copyright (1925). 

http://doi.org/10.1038/116845a0 

 

Bohr’s friend and colleague Georg von Hevesy (1885-1966) recounted Einstein’s 

reaction to this aspect of Bohr’s theory in a 1913 letter to Bohr [423, p. 113]: 

 

I told him then that it is established now with certainty that the 

Pickering-Fowler spectrum belongs to Helium. When he heard this he 

was extremely astonished and told me: “Then the frequency of the 

light does not depend at all on the frequency of the electron? … And 

this is an enormous achievement. The theory of Bohr must then be 

right.” 
Andrew Whitaker, Einstein, Bohr and the Quantum Dilemma: From Quantum Theory to Quantum Information, 

Cambridge University Press 2006. 

 

Einstein later summarized Bohr’s achievements in atomic theory [339]: 

 

That this insecure and contradictory foundation [of quantum physics 

in those years] was sufficient to enable a man of Bohr’s unique 

instinct and tact to discover the major laws of the spectral lines and 

of the electron shells of the atoms together with their significance for 

chemistry appeared to me like a miracle—and appears to me a 

miracle even today. 
Albert Einstein, Autobiographical Notes, In: Albert Einstein: Philosopher-Scientist, Paul Arthur Schillp (Editor), 

Cambridge University Press 1949. 

https://doi.org/10.1038/121580a0
http://doi.org/10.1038/116845a0
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