
 

 

Backstory to Wave-Particle Duality 

In Query 29 of his Opticks, Newton had famously asked: 

  

Are not the Rays of Light very small Bodies emitted from shining 

substances? 

 

Thus, Newton conjectured his corpuscular view of light and was able to account 

quantitatively for the optical phenomena known in the 17th century, including 

refraction of light. It was not until the 19th century that the observation of diffraction 

showed conclusively the inadequacy of Newton’s picture. Meanwhile, Christiaan 

Huygens (1629-1695) in the 1690s proposed that light “spreads, as sound does, by 

spherical surfaces and waves: for I call them waves from their resemblance to those 

which are seen to be found in water when a stone is thrown into it.” [406] To support 

the transmission of such waves, Huygens proposed the existence of “ethereal matter,” 

the thorny concept of an ether going back in some form to the Greeks and persisting 

up to applications of the electromagnetism of Maxwell and finally found to be 

unnecessary by Einstein’s development of special relativity in 1905. However, 

Huygens’ waves were actually longitudinal as with the sound waves of his inspiration, 

and not the transverse waves that we now know from Maxwell’s electromagnetism. 

And they were considered in terms of impulses in a medium and not as periodic waves 

in the modern sense because methods for treating periodicity had not yet been 

formulated [309, p. 343]. Another property of light familiar to Newton and Huygens 

was interference though then only incompletely understood. Thomas Young (1773-

1829) made a decisive advance by explaining the physics behind constructive and 

destructive interference of overlapping waves followed by Augustin Fresnel (1788-

1827) who formulated the mathematics of interference as well as experiments to verify 

the ideas. This included the double-slit arrangement as previously discussed in 

Chapter 1. An important confirmation of Fresnel’s theory was obtained by François 

Arago (1786-1853) who experimentally observed a bright spot at the center of the 

geometrical shadow of a circular obstruction. Formed by constructive wave 

interference, this phenomenon was surprising to many at the time and became known 

as “the spot of Arago.” By the late 19th century, the success of Maxwell’s approach 

had merged optics and electromagnetism, with light now being recognized as a type of 

electromagnetic wave. And so it was that light was firmly in the category of wave 

when the quantum of action was discovered in 1900. 

However, Newton was somewhat of a moving target as usual. In order for Newton 

to be able to describe diffraction, he knew that the motion of the light corpuscles 

would have to be affected at a distance by the diffracting body. An example was 

Francisco Grimaldi’s (1618-1663) observation of the fringes of light diffracted from 

an edge in 1665. Regarding this situation, Newton also famously said in another 

query: 

 

Are not the Rays of Light in passing by the edges and sides of Bodies, 



 

 

bent several times backwards and forwards, with a motion like that of 

an Eel? And do not the three Fringes of colored Light above-

mentioned arise from such bendings? 

 

Thus, within Newton’s picture, a force necessarily reaches out from the surface of the 

body. For Newton’s theory to be successful in all applications, including diffraction, it 

would actually have had to be something of a corpuscular-wave! However, rather than 

being ahead of his time, anticipating a type of eel-corpuscle duality, we can see in 

hindsight that Newton’s approach to optics did not stand a chance in 1704 when the 

Opticks was published. However, Newtonian mechanics from the Principia was 

enormously successful and changed the way science was done. Why was the Principia 

so successful and the Opticks much less so? 

As discussed in the section Deductive versus Inductive Thought, the striking aspect 

of Newton in the Principia was his deductive approach in that he would “feign no 

hypotheses” in contrast to other scientists of the era. What sets Newton apart from 

Leibnitz and others is that he does not insist that nature act in certain ways just 

because he doesn’t like it. Nature did conform accurately to his universal gravity in 

which a force between masses reaches out instantaneously over arbitrary distances. 

Leibnitz would object to Newton’s theory and simply declare that “matter cannot act 

where it is not.” But that was his loss. Newton did not understand how “matter cannot 

act where it is not” either. In a private letter in 1692 to a confidant, Newton stated 

[407, p. 52]: 

 

 See the print edition of The Quantum Measurement Problem for quotation. 

 

Newton repeatedly did search for some explanation of how universal gravity might 

act. He sought to describe universal gravity in terms of other phenomena: aether 

particles, electrical effluvia, an aether with variable density, etc. [407, p. 40]. None of 

these approaches could produce a force varying inversely as the square of the distance 

and that acts mutually between masses. But he did not allow this to affect or prejudice 

the science that did. One historical study has argued that Newton did not follow his 

deductive approach in the Opticks but instead it was Huygens who more closely 

followed Newton’s deductive method from the Principia in his own more successful 

development of optics [408]. Perhaps the paradigm of deductive versus inductive 

thinking also explains this aspect of Newton’s research in optics. 

The impact of Newton’s Principia was so overwhelming that his universal theory 

of gravity, with its force instantaneously acting at distance, became the template for 

performing successful science. In particular, it was also applied to the laws of 

electricity and magnetism in the century to follow. The formulation of 

electrodynamics by André-Marie Ampère (1775-1836) was in terms of an inverse-

square force acting instantaneously at a distance [340, p. 348], and this approach was 

adopted by others into the next century including Gauss, Weber, Lorentz, Lienard and 

Wiechert. However, the mostly self-taught but prodigious Michael Faraday introduced 

the concept of lines of force traversing space between conductors and made this 



 

 

tangible in his demonstrations using sprinklings of iron filings. This led to the view of 

an electromagnetic field occupying the space in the regions between current carrying 

conductors. The field became an independent entity that could fill space itself, even in 

a vacuum. Faraday’s field concept was taken over by Maxwell leading eventually to 

his electromagnetic field equations. Ampère’s action at a distance formulation would 

give identical results as long as the current changes were not too rapid. The concept of 

electromagnetic fields ultimately would be needed as experiments became more 

refined. However, at the time of Faraday’s investigations electromagnetic waves were 

unknown and they were first detected by Heinrich Hertz (1857-1894) in 1888, twenty 

years after Faraday died. This gave concrete evidence for the field concept which 

would become central to much of the physics of the 20th and 21st centuries. One 

implication of the presence of electromagnetic fields that was later discovered was 

that they would require a finite time to propagate. However, Faraday actually 

anticipated this and he wrote a sealed letter on March 12, 1832 stating his views on the 

propagation of electromagnetism, intending it to be read after one hundred years. The 

letter was given to the Secretary of the Royal Society of London where it lay forgotten 

for the next century until it was finally opened by Sir William Bragg (1862-1942) on 

June 24, 1937 [409, p. 11]: 

 

I am inclined to compare the diffusion of magnetic forces from a 

magnetic pole to the vibrations upon the surface of disturbed water, 

or those of air in the phenomenon of sound; i.e. I am inclined to think 

the vibratory theory will apply to these phenomena as it does to 

sound, and most probably to light. By analogy, I think it may possibly 

apply to the phenomenon of induction of electricity of tension also. 

These views I wish to work out experimentally; but as much of my 

time is engaged in the duties of my office, and as the experiments will 

therefore be prolonged, and may in their course be subject to the 

observation of others, I wish, by depositing this paper in the care of 

the Royal Society, to take possession as it were of a certain date; and 

so have right, if they are confirmed by experiment, to claim credit for 

the views at that date; at which time as far as I know, no one is 

conscious of or can claim them but myself. 
G.R.M. Garratt, The Early History of Radio: From Faraday to Marconi, The Institute of Engineering and Technology, 

London 2006, Reproduced by permission of the Institution of Engineering & Technology. 
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