
 

 

Exact Conservation with Whole Photon or Nothing 

As discussed in the section Einstein’s Ghost Field, since the early 1920s Einstein had 

been investigating the formulation of quantum mechanics using “ghost fields,” 

guiding fields that give probabilities of the directions in which particles will proceed, 

and so they follow their directions independently, giving only average energy and 

momentum conservation. At the same time, de Broglie was developing his own 

version of a hidden-variable theory, which utilized the entire configuration space and 

presented it at the 1927 Solvay Conference [4]. Einstein’s familiarity with these issues 

prompted him to comment on the action at a distance feature of his Figure 5.15(a) 

thought experiment, 

 

It seems to me that this difficulty cannot be overcome unless the 

description of the process in terms of the Schrödinger wave is 

supplemented by some detailed specification of the localization of the 

particle during its propagation. I think M. de Broglie is right in 

searching in this direction. If one works only with Schrödinger waves 

the Interpretation II of |𝜓|2, I think, contradicts the postulate of 

relativity. 
G. Bacciagaluppi and A. Valentini, Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference, 

Cambridge University Press, 2013.  

 

With his by now hands-on knowledge of conservation laws and nonlocality, Einstein 

also emphasized in the Solvay Discussion the implications of his Interpretation II 

regarding conservation, 

 

It is only by virtue of II that the theory contains the consequence that 

the conservation laws are valid for elementary processes; it is only 

from II that the theory can derive the result of the experiment of 

Geiger and Bothe, and can explain the fact that in the Wilson [cloud] 

chamber the droplets stemming from an -particle are situated on 

very nearly contiguous lines. 
G. Bacciagaluppi and A. Valentini, Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference, 

Cambridge University Press, 2013.  

 

From this statement would emerge the beginnings of a struggle over the next fifty 

years to ascertain theoretically and experimentally the nature and interrelations of 

nondeterminism, entanglement, exact conservation laws and the corpuscular aspects of 

photons. These would be the ingredients needed to characterize the quantum 

measurement problem. 

Recall from the discussion in the section BKS Showdown over Quanta that the 

Bohr-Kramers-Slater (BKS) theory for electron-radiation scattering had predicted 

energy conservation only on average but this was refuted by the experiments of 

Compton-Simon in 1925 demonstrating exact energy and momentum conservation and 

Bothe-Geiger in 1926 also demonstrating coincidence between the produced photons 
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and electrons. This led to the acceptance of Einstein’s light quanta with its “whole 

photon or nothing” property though Einstein still struggled to find an acceptable way 

to understand quantum theory. Schrödinger had been skeptical of the reality of 

discontinuities in quantum theory since he had complained to Bohr about “all this 

damned quantum jumping” during his visit to Copenhagen in 1926. In his series of 

Wave Mechanics papers in 1926, he introduced characteristic frequencies as the basic 

properties of interacting systems and explained dynamics as a resonance phenomenon 

that maintains space-time continuity. His attitude was that [449], 

 

 See the print edition of The Quantum Measurement Problem for quotation. 

 

Schrödinger had also been quite sympathetic to BKS with its adherence to 

continuity and did not object to violation of exact conservation laws for individual 

events. His fourth Wave Mechanics paper also developed a treatment of radiation 

scattering with continuous waves which conserved energy and momentum only on 

average [450]. However, Schrödinger retreated from publicly discussing his original 

interpretation following the pressure from Bohr and the results of the photon-electron 

scattering experiments that clinched the validity of exact conservation laws for every 

individual interaction [451]. However, he returned to exploring his earlier views in the 

1930s after his discovery of quantum entanglement and also possibly encouraged by 

new experiments of Shankland [452] that apparently conflicted with the earlier 

Compton-Simon and Bothe-Geiger results. This provoked a flurry of letters in Nature 

by Dirac, Peierls, and others discussing the startling implications if this turn of events 

was valid. This included a letter by Bohr and a report by Jacobsen from Bohr’s 

Copenhagen Institute who reported his new scattering measurements that did support 

exact conservation laws [453] [454]. However, there were still lingering doubts in 

some circles which were finally put to rest in 1950 with experiments by Cross and 

Ramsey [455] and Hofstadter and McIntyre [456] verifying exact conservation and 

coincidence, employing modern electronic counting methods. In contrast, the Bothe-

Geiger experiments of 1926 were laborious and time-consuming, employing two 

opposing needle counters and X-rays passing between them. One of the counters 

responded only to photons and the other only to recoil electrons. The deflections of the 

counters were recorded on silver bromide film that moved at high speed between the 

counters to record the timing of the particles from the collisions. The recording of 

coincidences of the joint impact of a photon and recoiling electron would indicate the 

conservation of energy at the atomic level. It took Bothe and Geiger almost a year to 

develop, dry, and analyze the results from the three kilometers of 1.5 cm wide film it 

took to accomplish this in order to obtain the statistically convincing results that the 

photon and electron counter were coincident to within 10−4 sec. These intense efforts 

might even be viewed as a prefiguring of the Bell-type correlation experiments. On 

Einstein’s recommendation, Walter Bothe shared the 1954 Nobel Prize with Max 

Born, Hans Geiger having died in 1945 [457] [458].  

Still harboring doubts, Schrödinger persuaded Ádám, Jánnosy, and Varga [459] 

[460] to carry out Heisenberg’s version of Einstein’s thought-experiment to test 



 

 

whether light at the half-silvered mirror would always respond as a particle or a wave, 

Figure 5.15(b) [461]. However, the result was effectively a null experiment due to 

insufficient detector efficiency at that time. It was not until 1974 that Clauser finally 

demonstrated the “whole photon or nothing” property that photons do not split at a 

half-silvered mirror and that true single photons are not measured at both detectors 

simultaneously [462]. Only one detector clicks. This experiment used a light source 

based on atomic cascades in mercury atoms to produce heralded single photons and 

two joint intensity measurements performed at the outputs of the beam splitter. If the 

photon is indivisible, detectors 1 and 2 are never triggered simultaneously so that there 

is an anti-correlation effect, < 𝑛̂1𝑛̂2 >= 0, i.e., photon antibunching. Clauser’s 

experiments on the “whole photon or nothing” photon antibunching also confirmed the 

exact point-wise conservation of energy in QED, further confirming this aspect of the 

Compton-Simon and Bothe-Geiger experiments. A calcium atomic cascade source was 

used by Grangier et al. to also observe antibunching as well as wave interference 

effects in a Mach-Zender interferometer configuration [72]. Einstein’s concern about 

action at a distance was finally addressed by Guerreiro et al. with the experimental 

observation of single-photon anti-bunching in which the detectors are separated by 

space-like distances, confirming that in each round of the experiment only one 

detector clicks [463]. 
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