
 

 

Back-Action from the World 

The classical mechanics of Newton was initially found to be consistent with the 

fundamental characteristic of a successful measurement: from the results of an 

experiment, it could derive conclusions regarding the results of subsequent 

experiments. This is due to the property that the states of the observed system before 

and after the measurement can be regarded as identical. This continued to be the case 

when classical mechanics was extended to Albert Einstein’s (1879-1955) view of 

space-time coordination of events from his theory of relativity in 1905 to account for 

the finite speed of light and its invariance for inertial observers. Although the 

implications were not immediately realized, all of this had already changed in 1900 

with the discovery by Max Planck (1858-1947) that the existence of a new elementary 

quantity called the quantum of action designated by h, now called Planck’s constant, 

was needed to understand atomic radiation (action is a quantity with dimensions of 

energy-time). The introduction of the fundamental quantum of action by Planck was 

the beginning of the end for determinism. It took several decades for this to be 

generally accepted by the scientific community but eventually led in 1925 to a new 

corresponding theory, quantum mechanics. For Niels Bohr (1885-1962), who was one 

of the major figures in quantum measurement as well as atomic and nuclear physics, 

the essence of quantum theory could be expressed in terms of a quantum postulate, 

which [310] 

 

attributes to any atomic process an essential discontinuity, or rather 

individuality, completely foreign to the classical theories and 

symbolized by Planck’s quantum of action. 
Reprinted by permission from Macmillan Publishers Ltd; Nature 121, 580, copyright (1928). 
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This postulate implies a renunciation of the causal space-time coordination of atomic 

processes. Classically, quantifiable properties exist as an objective reality and 

measurement determines the value of these pre-existing quantities with in principle 

arbitrary accuracy. For quantum mechanics, with intrinsically non-deterministic 

physics, the situation is very different since the measurement generally causes a 

change in the state of the system (except for special cases such as non-demolition 

measurements discussed further in Chapter 7), and this change is in principle 

impossible to predict. Bohr wrote in 1935 [311]: 

 

The procedure of measurement has an essential influence on the 

conditions on which the very definition of the physical quantities in 

question rests. 
Reprinted by permission from Macmillan Publishers Ltd; Nature 136, 1024, copyright (1935). 

https://doi.org/10.1038/136065a0 

 

This property of quantum measurement reflects the back-action occurring between 

measurement device and measured system. In Measure for Measure, Shakespeare 
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(1564-1616) took the meaning of his title from Mathew 7:2, “with what measure ye 

mete, it shall be measured to you again,” the title then being aptly suggestive of the 

back-action between measurement device and system characteristic of quantum 

measurement. 

Individual quantum systems need not have well-defined states but instead may be 

in correlated arrangements with other quantum systems, “entanglement”, where only 

the entire superposition carries information about the whole. The term entanglement 

was introduced by Erwin Schrödinger (1887-1961) in 1935 [156], though aspects of it 

had been seen by Einstein and Bohr over the previous twenty years [111]. As will be 

discussed, Bohr and Einstein in many ways pioneered the deepest inquiries into 

quantum measurement during the first half of the 20th century. Entanglement can 

occur between different particles or between two or more properties of the same 

particle. In particular, according to Schrödinger’s equation, a measurement device 

interacting with a quantum system may become entangled with its observable 

properties before measurement occurs. Other signatures of the quantum had also been 

identified in the quest to understand the essential differences between classical and 

quantum. As demonstrated in Chapter 4, the quantum measurement problem is related 

to the unitary prediction of entanglement, as given by the mantra: 

 

To the extent there is entanglement, there is no measurement. 

 

In 1927, Werner Heisenberg (1901-1976), working at Bohr’s institute in 

Copenhagen, obtained his indeterminacy or “uncertainty” relations when he realized 

that quantum mechanics must allow for approximate values of position and 

momentum with trajectories that are not sharply defined [7]. In relation to this, 

Heisenberg and Bohr also examined the possibility of “disturbances” occurring during 

quantum measurements, such as Heisenberg’s famous example of the -ray 

microscope [9], in which the act of observing would impart uncontrollable momentum 

kicks to any quantum objects showing the futility of determining its trajectory. 

However, Bohr later considered this description as misleading and instead emphasized 

the role of the interaction between measurement device and system, because the 

interaction required during measurement is uncontrollable. This necessarily affects the 

state of the closed system, and the results have an apparent random or non-

deterministic appearance. 
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