
 

 

Atomism versus Continuum 

Newton had memorably produced a light spectrum (ca. 1670) by directing sunlight 

through a prism, producing “a confused aggregate of rays induced with all sorts of 

colors” instead of discrete lines. Twenty-five years after Newton’s death, Scottish 

natural philosopher Thomas Melvill (1726-1753) reported observations of discrete 

spectra resulting from heated sodium within the salt molecules held in a flame. Joseph 

von Frauenhofer (1787-1826) observed discrete dark lines in the solar spectrum, later 

explained by the presence of sodium in the outer layers of the sun. These were the 

beginnings of experimental optical spectroscopy. As discussed in the section The Fall 

of Classicality, the radiating power of a substance seen in its emission spectrum could 

be shown to equal its absorbing power as seen in its dark line absorption spectrum, as 

first quantified by Kirchhoff in 1859. He was able to derive from these results 

Kirchhoff’s Law, the crucial property of blackbody radiation that eventually led 

Planck to discover the quantum of action in 1900. Pais points out that, by the time 

Bohr entered the picture, Kayser’s handbook of spectroscopy already contained 5000 

pages, a tremendous backlog of spectral information, which lacked fundamental 

interpretation [9, p. 141]. Bohr’s remarkable success in developing his quantized 

atomic theory in 1913 began with the case of the hydrogen atom. The hydrogen 

spectrum was first detected by Anders Ångström (1814-1874) in 1853 and within a 

few years the frequencies of four of the lines of the hydrogen spectrum were identified 

and measured. 

The view had been generally widespread in the 19th century that continuity was a 

dominant aspect of the description of the natural world, tracing back at least to 

Aristotle’s definition [353]: 

 

The continuous is a species of the contiguous; two things are called 

continuous when the limits of each, with which they touch and are 

kept together, become one and the same. [Metaphysics XI.12] 

 

However, Aristotle also anticipated discontinuities in nature: 

 

Nor, again, can there be anything between that which suffers and that 

which causes increase; for that which starts the increase does so by 

becoming attached in such a way that the whole becomes one. Again, 

the decrease of that which suffers decrease is caused by a part of the 

thing becoming detached. So both that which causes increase and 

that which causes decrease must be continuous; and if two things are 

continuous there can be nothing between them. [Physics VII.2] 

 

It is evident, therefore that between the moved and the mover – the 

first and the last – in reference to the moved there is nothing 

intermediate. [Physics VII.2] 

 



 

 

Nor again is there anything intermediate between that which 

undergoes and that which causes alteration. [Physics VII.2] 

 

And this is evident from what happens in respect of sensation; for the 

same thing never appears sweet to some and bitter to others… 

[Metaphysics XI.6] 

 

Continuity here is being used as adjacent in time. It appears that what is being 

described are actually discontinuous processes since they are extremities and are 

adjacent. It may be that had Aristotle been alive when quantum mechanics was 

founded, he might have associated Planck’s quantum of action with these 

discontinuities and concluded that because particles are quantized and divisible, that 

this would require their entire absorption into the measuring device upon measurement 

in order to meet the requirement of “becoming attached in such a way that the whole 

becomes one.” This would be akin to accepting wave function collapse. 

Some two millennia following the beginnings of atomism with the Greeks, the 

mid-18th and early 19th centuries saw the first stirrings of quantitative formulations of 

atoms, Figure 5.6, with Daniel Bernoulli (1700-1782) and James Joule (1818-1889) 

followed by the full development of the kinetic theory of gases by Rudolph Clausius 

(1822-1888), James Clerk Maxwell (1831-1879), and Ludwig Boltzmann (1844-

1906). At the turn of the 19th century, Antoine Lavoisier (1743-1794) initiated the 

notion of chemical elements and determined that chemical compounds occur in 

proportion to their weights. On the basis of an atomic picture, John Dalton (1766-

1844) explained that elements are identical and that materials can be viewed as built 

up from atoms. Guy-Lussac (1778-1850) went further and formulated the law of 

volumes for reacting gases, which provided the context in which Avogadro (1776-

1856) was able to state that all gases contain an equal number of particles at equal 

volume, temperature and pressure, Avogadro’s Number 𝑁𝐴= 6.022 x 1023. The 1840’s 

saw the crucial formulation of the law of conservation of energy by Joule, Hermann 

von Helmholtz (1821-1894) and Robert Mayer (1814-1878). Clausius demonstrated 

the equivalence of heat and mechanical work, namely the First Law of 

thermodynamics, which more generally is the principle of conservation of energy. 

However, he found that thermodynamics required an additional concept: heat cannot 

of its own accord pass from a colder body to a warmer one, the Second Law of 

Thermodynamics. An equivalent statement of the Second Law is the impossibility of 

constructing a perpetual motion machine of the second kind: an apparatus that without 

violating the conservation of energy nevertheless transforms heat into mechanical 

work with 100% efficiency. For a system composed of atoms, Maxwell’s thought 



 

 

experiment involving a demon, “a very observant and neat-fingered being,” showed 

how the Second Law might be violated and later led to insights into the role of 

information in physical systems. Statistical mechanics began with the work of 

Maxwell and Boltzmann and gave a statistical interpretation of transport and thermal 

equilibrium involving the vital relationship between entropy and the probability of the 

state of a gas. It was developed by J. Willard Gibbs (1839-1903) into a form general 

enough to address all classical systems. All of these developments were essential 

precursors to Planck’s discovery of the quantum of action in 1900. The theories which 

dominated quantitative physics were all based on the continuum world picture: 

Newton’s equations of classical mechanics, Maxwell’s equations of electromagnetism, 

and Einstein’s special relativity. The dramatic transition to the discontinuities of 

quantum theory began in physics and eventually spread to chemistry and biology. 

  

 

Figure 5.6: Evolution of the conception of the atom. 
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