
 

 

Laplace’s Demon 

However, all of this detailed understanding still reaches back to the deterministic 

Newtonian worldview. By the late 18th century, physical science had become 

thoroughly divorced from religion and determinism prevailed. In 1814, Laplace 

characterized the nature of a deterministic universe but without the possibility of free 

will [326]: 

 

We may regard the present state of the universe as the effect of its 

past and the cause of its future. An intellect which at a certain 

moment would know all forces that set nature in motion, and all 

positions of all items of which nature is composed, if this intellect 

were also vast enough to submit these data to analysis, it would 

embrace in a single formula the movements of the greatest bodies of 

the universe and those of the tiniest atom; for such an intellect 

nothing would be uncertain and the future just like the past would be 

present before its eyes. 
Used by permission of Dover Publications. 

 

Such a hypothetical intelligence that can know all the forces upon it and predict the 

future has come to be known as Laplace’s Demon [327]. This was the view taken into 

the late 18th and early 19th centuries and also involved extending the deterministic 

Newtonian picture from particles to include a new type of quantity, the concept of 

field. Laplace’s Mécanique Céleste (1799-1825) included a reformulation of 

Newtonian mechanics in terms of a field, a quantity in which every point of space is 

assigned a magnitude and direction representing the acceleration produced by all the 

surrounding masses. This facilitated computation involving multiple bodies such as 

the 1846 prediction by John Couch Adams (1819-1892) and Jean-Joseph Leverrier 

(1811-1877) of the existence of the planet Neptune from irregularities found in the 

orbit of Uranus. The field concept played a further crucial role in the understanding of 

electricity, magnetism, and light by Faraday and Maxwell to profound effect, 

however, still under the influence of Newtonian determinism. 

The determinism of Laplace’s Demon stems from Newton’s second law of motion 

and the existence and uniqueness theorems for solutions of the corresponding 

simultaneous differential equations of second order for which initial values of the 

dependent variables and their first derivatives are known at an initial time. However, 

exceptions to the uniqueness theorems were known at least since the work of Poisson 

at the beginning of the 19th century. In the 1870s, Boussinesq searched for exceptions 

to Laplace’s Demon by way of singular solutions of certain classes of differential 

equations that have multiple solutions for certain initial conditions [328]. Later 

researchers focused on singular solutions in systems in which the force on a particle 

fails to satisfy a local Lipschitz continuity condition [329], which is known to be a 

sufficient condition for uniqueness. A simple example is Norton’s Dome, the motion 

of a mass initially balanced at the summit of a symmetrical dome which has multiple 



 

 

solutions for the same initial conditions [330]. However, such exceptions did not make 

much impact on researchers. The success of deterministic Newtonian descriptions of 

the universe was so extensive and convincing that conditions guaranteeing existence 

and uniqueness of solutions were viewed as the essence of a good physical theory. As 

always, nothing succeeds like success [331]. 

Even if we know that a unique solution exists, predictions often require that we 

know the initial conditions with a particular accuracy. Laplace’s Demon in some cases 

must be able to make its initial measurements with arbitrary accuracy. This is 

particularly true for deterministically chaotic systems, after Poincaré’s discovery in 

the 1890s of the possibility of instabilities of celestial bodies whose long-term 

dynamics is exponentially sensitive to the initial conditions. Laplace’s Demon was a 

precursor of many developments that explore whether there are limits on various 

aspects of knowledge. Even if Laplace’s Demon knows the initial conditions to 

arbitrary accuracy, prediction may even be computationally undecidable or intractable 

and require computational power beyond that of any deterministic algorithm as was 

demonstrated later in the 20th century [332] [333]. Such behavior can be exhibited for 

example by Turing machines [334], idealized universal computers that use predefined 

rules to determine a result from a set of input variables. An intriguing property of 

Turing machines is the famous Halting Theorem: configurations exist for which it 

cannot be known a priori whether the machine will give a result and stop computing. 

As a consequence, the long-time behavior of Turing machines is completely 

unpredictable [335]. In a clockwork universe, the state of a system at an initial time 

completely determines the state at a later time. However, the state in classical 

mechanics becomes identified with the measurement-outcome, and these two concepts 

are very different in quantum theory where complementarity disrupts the identification 

of measurement and state. That determinism and causality are logically independent 

notions was noted by Bertrand Russell [336] and the distinction later became 

important with the emergence of quantum theory. There are counter examples of 

theories which are causal and nondeterministic as well as examples which are 

deterministic but non-causal [337]. Quantum physics is a probabilistic theory that is 

causal but not deterministic. Other limits on knowledge include restrictions on 

information transmission via the constancy of the speed of light within Einstein’s 

Special Relativity, Heisenberg’s uncertainty principle of quantum mechanics, and the 

restrictions imposed by the existence of quantum entanglement leading to a variety of 

no-hidden-variable theorems that distinguish classical and quantum phenomena. A 

continuing question throughout the 20th and 21st centuries has been how these various 

limits relate to each other. As physics expanded its horizons, the clock in any 

clockwork universe was no longer assembled from merely cogs and gears. 

Maxwell’s equations had carried the determinism of Newton over into the realm of 

electromagnetism. However, a decade prior to Poincaré’s studies of chaos, Maxwell 

questioned how free will enters into nature. In 1873, he gave a talk entitled, “Does the 

progress of Physical Science tend to give any advantage to the opinion of Necessity 

(or Determinism) over that of Contingency of Events and the Freedom of the Will? ,” 

in which he delineated these distinctions [338]: 



 

 

 

There are other classes of phenomena which are more complicated, 

and in which cases of instability may occur, the number of such cases 

increasing, in an exceedingly rapid manner, as the number of 

variables increases....In all such cases there is one common 

circumstance,—the system has a quantity of potential energy, which 

is capable of being transformed into motion, but which cannot begin 

to be so transformed till the system has reached a certain 

configuration…For example, the rock loosed by frost and balanced 

on a singular point of the mountain-side, the little spark which 

kindles the great forest, the little word which sets the world a 

fighting, the little scruple which prevents a man from doing his will, 

the little spore which blights all the potatoes, the little gemmule 

which makes us philosophers or idiots. Every existence above a 

certain rank has its singular points. 

 

If, therefore, those cultivators of physical science…are led in pursuit 

of the arcana of science to the study of the singularities and 

instabilities, rather than the continuities and stabilities of things, the 

promotion of natural knowledge may tend to remove that prejudice in 

favour of determinism which seems to arise from assuming that the 

physical science of the future is a magnified image of that of the past. 

 

Maxwell emphasizes that there are phenomena which do not easily fit into the familiar 

deterministic framework and suggests that understanding of the physics of 

nondeterminism may arise from study of the physics associated with singularities and 

instabilities. He gave this talk shortly after he had devised his thought experiment for 

violating the Second Law of Thermodynamics in terms of yet another type of Demon, 

an entity, perhaps with free will, who could sort fast and slow molecules, which has 

come to be known as Maxwell’s Demon. As will be discussed in the section 

Irreversibility versus Demon, this was yet another piece of the puzzle determining the 

meaning of measurement. That there may be exceptions to determinism was 

acknowledged occasionally and mostly in private or within small circles, but the 

applications of science toward the end of the 19th century almost exclusively 

embraced physical determinism. Any exceptions were in the use of statistical methods 

which were viewed as representing ignorance of underlying deterministic phenomena. 

But ideas of nondeterminism did drift in the background, at least in the minds of the 

more deductive thinkers.  

As a student at the ETH Zurich around 1900, Einstein had been profoundly 

impressed by the ability of mechanics to provide explanations in areas that apparently 

had nothing to do with mechanics, for instance the mechanical theory of light, the 

kinetic theory of gases, and the deduction of the laws of thermodynamics from the 



 

 

statistical theory of classical mechanics [339, p. 18]. From the time of Newton until 

the close of the 19th century, the prevalent view among physicists was that mechanical 

concepts ultimately would suffice to explain all physical phenomena. Newtonian 

mechanics was so widespread and familiar in the 19th century that mechanical 

analogues of electromagnetic effects in terms of gears, idler wheels, and vortices were 

commonly devised to better understand and illustrate these phenomena. In 1863, 

Maxwell actually used a mechanical model as a guide to conclude that the vacuum 

displacement current must be added to the electromagnetic equations, which was the 

crucial element allowing him to derive the existence of electromagnetic waves in 

empty space moving at the speed of light [340, p. 356], Figure 5.5. He used this model 

to arrive at his Proposition 14, which modifies the equations for electric currents for 

the effect due to the elasticity of the medium by adding the displacement current �̇� to 

Ampère’s Law: ∇ × 𝐻 = 4𝜋𝑗 + �̇� [341]. Based on this result, Maxwell concluded that 

there should be electromagnetic waves: “We can scarcely avoid the inference that light  

consists in the transverse undulations of the same medium which is the cause of 

electric and magnetic phenomena.” [342] Maxwell emphasized that any mechanical 

aides should be regarded as scaffolding to be taken down after achieving 

understanding, leaving the electromagnetic fields as the only reality. Whereas in 

Newton’s formulation of the theory of gravitation the interaction between masses 

occurred instantly at a distance, we now know that the phenomena of 

electromagnetism have the subtlety that signals between charges proceeding at the 

speed of light, and this is implemented by waves of the electromagnetic field. 

However, those investigating electromagnetism in the late 19th century initially took 

Figure 5.5: James Clerk Maxwell’s mechanical model of gears and idler 

wheels for propagation of light through the luminerferous ether. 



 

 

the view that electrical signals also acted instantly at a distance similar to Newtonian 

mechanics. 
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