
 

 

Radical Conservatism  

Niels Bohr, a master of the deductive construction of physical theory, had an uncanny 

ability to pinpoint and transform deficiencies within theories [9] [538]. Bohr evolved 

this ability into a process, wherein he would categorize the faults within different 

versions of the theory and play them off against each other revealing what J. L. 

Heilbron has called partial truths [539]. These were then used to make hypotheses that 

could be applied not only to the parts that agreed with experimental observation, but 

also used to isolate exceptions wherein he would begin another round of constructing 

partial truths [540]. This approach to theoretical physics requires great creativity and 

the ability to embrace and work with paradox and contradiction. However, deductive 

thinking also requires responsibility as well as a deep understanding of physics in 

order for such a process to successfully lead to a solid piece of science. John Wheeler, 

who regarded Bohr as his mentor and was part of his Copenhagen Institute in the 

1930s, characterized him as a daring conservative [541], 

 

Conservative against postulating any change in the battle-tested laws 

of physics, but in the application of them, daring. 
Reproduced from J.A. Wheeler, Niels Bohr the Man, Physics Today 38 (10), 66 (1985), with the permission of the 

American Institute of Physics. https://doi.org/10.1063/1.881017 

 

Inspired by Bohr, Wheeler would later call this principle radical conservatism, that 

of conservatively respecting great principles while pushing ideas into radically new 

directions and logically deducing the unexpected consequences and insights if still 

constrained by the great principles [542]. Wheeler’s student Richard Feynman, who 

had discovered the sum-over-paths formulation of quantum mechanics, emphasized in 

an address at the 1961 Solvay Conference how the search for an exception or a failure 

is more prevalent in experiment than in theory [543, p. 89], 

 

I now realize that there is much to be said for considering 

theoretically the possibility that Q.E.D. is exact, although incomplete. 

This assumption may be wrong, but it is precise and definite, and 

suggests many things to study theoretically, while the other negative 

assumption, (that it fails somehow) is not enough to suggest definite 

theoretical research. This is Wheeler’s principle of “radical 

conservatism” . 

Things are, of course, quite the other way for experimental research. 

One should look very hard for an “expected” failure. I have probably 

been converted from my prejudice that it must fail, just in time to be 

caught off base by an experiment next month showing that indeed it 

does. 
Reprinted by permission of John Wiley & Sons, R.P. Feynman, The Present Status of Quantum Electrodynamics, pp. 

61-91; In The Quantum Theory of Fields, Proceedings of the Twelfth Conference on Physics at the University of 

Brussels, © Interscience Publishers, a division of John Wiley & Sons, Inc. NY 1961. 

 

The search for the exception is central to the process of deductive reasoning. Newton, 

https://doi.org/10.1063/1.881017


 

 

Maxwell, Einstein, Bohr, and others used this strategy of deduction constrained by 

great principles to investigate the foundations of physics but it is seldom used today, 

particularly regarding the quantum measurement problem. Though Bohr’s 

achievements are undeniable, his application of the deductive process to the problems 

in science has at times been surprisingly misunderstood. Deduction is explored at 

length in Chapter 6 where it is contrasted with the more commonly encountered 

practice of induction.  

Besides Bohr’s innate ability, he had been continually encouraged by the 

intellectual stimulation of a remarkable family life [9, p. 42] and by university 

teachers, such as family friend and philosopher Harald Høffding (1834-1931), who 

taught that the concept of a secure fact and the notion of a complete theory are at best 

ideals [540], 

 

 See the print edition of The Quantum Measurement Problem for quotation. 

 

What Bohr would insist upon in discussing a proposed conjecture, was whether he 

could draw arguments in favor of it from the available evidence: logical analysis was 

not for him a mere verification of consistency, which he regarded as trivial, but a 

potent and productive device for directing the mind. Wheeler recalled Bohr’s 

Copenhagen Institute in the 1930’s:  

 

“The central idea of the institute was clear. No progress without a 

paradox… Explanation was never dry pedagogy, but a one-man 

tennis match in which Bohr hit the ball from one side of the court, 

then ran to the other fast enough to hit it back – the more volleys, the 

more enjoyable the game: Such-and-such an effect leads one to 

expect thus-and-so…Indeed one does see thus-and-such, but then so-

and-so observed such-and-such …That finding put us in immense 

difficulty. Just at this point so-and-so pointed out that the proper 

formulation of the principle is not what we thought, but thus-and-

such…This discovery brought the whole subject in to order. But then 

so-and-so realized that this extended principle stands in absolute 

contradiction to the stability of such-and-such...This discrepancy 

convinced us that we were absolutely lost. But just today we find that 

the new formulation itself is really completely nonsense...What fools 

we have all been! We have only to recognize such-and-such and we 

see at last that absolutely everything has to be exactly as it is.” 
Reproduced from J.A. Wheeler, Niels Bohr the Man, Physics Today 38 (10), 66 (1985), with the permission of the 

American Institute of Physics. https://doi.org/10.1063/1.881017 

 

At a difficult point in a discussion, Bohr would sometimes make a joke based on the 

old saying about the two kinds of truths, one kind being so simple that the opposite 

was clearly false and the other so-called “deep truths” whose opposite also is a deep 

truth [503, p. 240].  
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