
 

 

Theory and Classification of Measurement Operations 

Introduction 

There exist numerous categories of measurement operations [656] [186] that have 

been considered in the literature. Whether or not such operations are possible in terms 

of actual measurement is unknown, and the successful resolution of the measurement 

problem is expected to provide further insight into this problem. In this section, some 

of these classes will be reviewed. It is sometimes found that different authors use the 

same term for different effects. These will be differentiated when found. 

A projection operator 𝑃 is a linear idempotent transformation, i.e., one for which 

𝑃2 = 𝑃. A projection operator has the property that repeated application of 𝑃 to 𝑃|𝜓⟩ 
does not alter 𝑃|𝜓⟩. Note that all rank 1 operations of the form |𝜓⟩⟨𝜓| are projection 

operators, but a projection operator need not be rank 1.  

A POVM of 𝑁 possible outcomes is specified by a set of positive self-adjoint 

(Hermitian for finite dimensional matrices) operators of the form 𝐸𝑘 = 𝑀𝑘
†𝑀𝑘, 𝑘 ∈

Ω = {1,⋯ ,𝑁} with the properties 

 

∑𝐸𝑘 = 𝐼, 

 

where ⟨𝜓|𝐸𝑘|𝜓⟩  ≥ 0  ∀ |𝜓⟩  ∈ ℋ𝐴, 𝐸𝑘 ∈ ℬ(ℋ), and ℬ(ℋ) denotes the set of bounded 

linear operators on the Hilbert space ℋ. When the k th result occurs, the density 

operator ϱ is transformed according to  

 

 
 ℰ𝑘(𝜚) =

𝑀𝑘𝜚𝑀𝑘
†

𝑝𝑘
 (7.1) 

with probability 𝑝𝑘 = Tr[𝑀𝑘𝜚𝑀𝑘
†] = Tr[𝜚𝐸𝑘]. We define POVM observables via a 

set of positive operators {𝐸𝑘} satisfying ∑𝐸𝑘 = 𝐼, 𝐸𝑘 ∈ ℬ(ℋ). Aside from the possibility 

of non-Hermitian decompositions 𝑀𝑘, 𝐸𝑘 = 𝑀𝑘
†𝑀𝑘 one can always find a 

decomposition 𝐸𝑘 = 𝐴𝑘
2, where 𝐴𝑘 is any square root of 𝐸𝑘. Note that 𝐴𝑘 are not 

necessarily unique and the map ℰ(𝜚) may not be unique for a given set of operators 𝐸𝑘. 

When the 𝐴𝑘 are further constrained to be positive semi-definite, 𝐴𝑘 can also be shown 

to be unique and will be denoted 𝐴𝑘 = 𝐸𝑘
1/2.  

We note that there exists a more general representation of ℰ𝑘(𝜚) for which 

ℰ𝑘(𝜚) =  ∑ 𝑝𝑘ℰ𝑘,𝑖(𝜚)𝑖  that are defined as inefficient in [186, p. 32]. In such cases a 

pure state is generally transformed to a mixed state for a given outcome. Although this 

is possible mathematically, the authors are not aware of any physical measurement 

that has been shown to be necessarily caused by an inefficient non-unitary action, and 

hence the question of whether or not physical measurement operations allow such 

measurements is an open question. On the other hand, experimental evidence does 

support the form of Equation (7.1). Henceforth, all measurements will be assumed to 

be of the form of Equation (7.1). The density matrix that is averaged over all 



 

 

measurement results is often referred to as Kraus decomposition or operator-sum 

form: 

 

 𝑇(𝜚) =∑𝑀𝑘𝜚𝑀𝑘
†. (7.2) 

Note that for a given set of POVM elements 𝐸𝑘 , the transformation of the density 

matrix is not unique, until a particular decomposition is considered of the 𝐸𝑘 elements 

that are to comprise the operators in the transformation of the density matrix. Hence 

there can be different implementations of a given set of POVM elements 𝐸𝑘 . 
Projection operators 𝑃𝑘 that have a non-trivial degenerate subspace transform the 

density matrix according to an Ansatz by Lüders that corrected a deficiency in von 

Neumann’s original treatment. A Lüders [657] transformation occurs when the density 

matrix transforms according to: 

 
 ℰ𝑘
𝐿(𝜚) ≡

𝑃𝑘 𝜚𝑃𝑘 

𝑃(𝑘)
. (7.3) 

A general transformation of 𝜚 may or may not be a Lüder’s transformation. We denote 

the average density matrix given a Lüder’s instrument as 𝑇𝐿(𝜚). Consider the 

following which can be used to consider a von Neumann Hermitian observable 𝐴 

(which is not necessarily a positive matrix) as a POVM. A Hermitian matrix has a 

spectral decomposition. 𝐴 = ∑ 𝜆𝑖𝑃𝑖 𝑖  where the 𝑃𝑖  are projection operators and 𝜆𝑖 are 

the unique eigenvalues of 𝐴. The probability of the 𝑘 th outcome of the observable 𝐴 

is given by Tr(𝜚𝐴𝑘). A POVM with elements {𝐴𝑘} would yield the correct 

probabilities of the observable. However, not only does the probability of an 

observable need to coincide with von Neumann’s postulate, but the state 

transformation needs to coincide with the projection onto the eigenstates of an 

observable. The POVM defined via Lüder’s instrument of Equation (7.3) suffices to 

implement a von Neumann Hermitian observable.  

It has been noted previously that in defining POVM positive operators {𝐸𝑘} 

satisfying ∑𝐸𝑘 = 𝐼, 𝐸𝑘 ∈ ℬ(ℋ), that the map ℰ(𝜚) may not be unique for a given set of 

operators 𝐸𝑘. When applying the decomposition 𝐸𝑘 = 𝐸𝑘
1/2𝐸𝑘

1/2, we will refer to the 

resulting implementation as a generalized Lüder’s instrument. The density matrix 

when the k th outcome occurs is given by 

 
 ℰ𝑘
𝐿(𝜚) =

𝐸𝑘
1/2 𝜚𝐸𝑘

1/2

𝑃(𝑘)
,   (7.4) 

where 𝑃(𝑘) is the probability of the 𝑘 th outcome. An adjoint map of ℰ𝑘(𝜚) that maps 

observables, denoted ℰ𝑘
∗(𝐴): ℬ(ℋ) → ℬ(ℋ), 𝐴 ∈ ℬ(ℋ), can be defined via the 

representation for which the operator is transformed and the state 𝜚 is constant. In 

analogy to the unitary case for which the ℰ𝑘
∗(𝐴) is the Heisenberg representation and 

ℰ𝑘(𝜚) the Schrödinger representation, the probability of measurement must be the 

same, which is given by the duality requirement that Tr(𝐴𝑘ℰ𝑘(𝜚)) = Tr(ℰ𝑘
∗(𝐴𝑘)𝜚).  

A POVM observable 𝐴 = {𝐴𝑘} will be said to be commutative if [𝐴𝑖 , 𝐴𝑗] = 0, 𝑖 ≠



 

 

𝑗 ∈ 𝛺𝐴 where 𝛺𝐴 is the outcome space for 𝐴. Two POVMs 𝐴 = {𝐴𝑘}, 𝐵 = {𝐵𝑘} with 

outcomes in Ω𝐴 and Ω𝐵 respectively are said to commute if [𝐴𝑖 , 𝐵𝑗] = 0, for all 𝑖, 𝑗 ∈

𝛺𝐴 × 𝛺𝐵, where [𝐴, 𝐵] denotes the commutator between 𝐴 and 𝐵. A POVM observable 

𝐴 has rank 1 if ℛ(𝐴𝑖) = 1, ∀𝑖, where ℛ(𝐵) denotes the rank of the matrix 𝐵. 
A joint measurement in its most general form is a single measurement 𝐶 = {𝐶𝑖,𝑗} 

that has outcomes in the product space 𝑖, 𝑗 ∈ 𝛺𝐴 × 𝛺𝐵. Note that sequential 

measurements such as 𝐴 followed by 𝐵 is a joint measurement, but not all joint 

measurements need be sequential measurements.  

Given a joint measurement 𝐶, the marginal observables are computed as i.e. 𝐴 =
∑ 𝐶𝑖,𝑗𝑗 , and 𝐵 = ∑ 𝐶𝑖,𝑗𝑖 . Two POVM observables 𝐴 and 𝐵 are said to be jointly 

measurable if there exists a measurement 𝐶 on Ω𝐴 × Ω𝐵 that returns 𝐴 and 𝐵 as 

marginal POVM observables. POVM observables 𝐴 and 𝐵 that commute, are also 

jointly measurable [229]. 
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